首页> 外文期刊>Applied mathematics and computation >Higher order multi-step iterative method for computing the numerical solution of systems of nonlinear equations: Application to nonlinear PDEs and ODEs
【24h】

Higher order multi-step iterative method for computing the numerical solution of systems of nonlinear equations: Application to nonlinear PDEs and ODEs

机译:计算非线性方程组数值解的高阶多步迭代方法:在非线性PDE和ODE中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

In the present study, we consider multi-step iterative method to solve systems of nonlinear equations. Since the Jacobian evaluation and its inversion are expensive, in order to achieve a better computational efficiency, we compute Jacobian and its inverse only once in a single cycle of the proposed multi-step iterative method. Actually the involved systems of linear equations are solved by employing the LU-decomposition, rather than inversion. The primitive iterative method (termed base method) has convergence-order (CO) five and then we describe a matrix polynomial of degree two to design a multi-step method. Each inclusion of single step in the base method will increase the convergence-order by three. The general expression for CO is 3s - 1, where s is the number of steps of the multi-step iterative method. Computational efficiency is also addressed in comparison with other existing methods. The claimed convergence-rates proofs are established. The new contribution in this article relies essentially in the increment of CO by three for each added step, with a comparable computational cost in comparison with existing multi-steps iterative methods. Numerical assessments are made which justify the theoretical results: in particular, some systems of nonlinear equations associated with the numerical approximation of partial differential equations (PDEs) and ordinary differential equations (ODEs) are built up and solved. (C) 2015 Elsevier Inc. All rights reserved.
机译:在本研究中,我们考虑采用多步迭代法求解非线性方程组。由于雅可比计算及其反演费用昂贵,因此为了获得更好的计算效率,我们在所提出的多步迭代方法的单个周期内仅计算一次雅可比及其求逆。实际上,所涉及的线性方程组是通过LU分解而不是通过反演来解决的。原始迭代方法(称为基本方法)的收敛阶数(CO)为5,然后我们描述了一个二阶矩阵多项式,以设计一种多步法。基本方法中的每一个步骤都将使收敛阶数增加三。 CO的一般表达式为3s-1,其中s是多步迭代方法的步数。与其他现有方法相比,还可以解决计算效率问题。确定了所要求的收敛速度证明。本文的新贡献主要在于,每增加一个步骤,CO的增量为3,与现有的多步骤迭代方法相比,其计算成本相当。进行数值评估以证明理论结果是正确的:特别是,建立并求解了一些与偏微分方程(PDE)和常微分方程(ODE)的数值逼近相关的非线性方程组。 (C)2015 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号