...
首页> 外文期刊>Applied mathematics and computation >Parity symmetry with respect to both x = 0 and x = L requires periodicity with period 4 L: Connections between computer graphics, group theory and spectral methods for solving partial differential equations
【24h】

Parity symmetry with respect to both x = 0 and x = L requires periodicity with period 4 L: Connections between computer graphics, group theory and spectral methods for solving partial differential equations

机译:关于x = 0和x = L的奇偶对称性需要周期为4 L的周期性:计算机图形学,群论和谱方法之间的联系,用于求解偏微分方程

获取原文
获取原文并翻译 | 示例

摘要

A function is symmetric with respect to a point x = L if f(x+L)=f(-x+L) for all x and similarly is antisymmetric if f(x+L)=-f(-x+L). A function which is either symmetric or antisymmetric is said to be of "definite parity" with respect to L. The sines and cosines of a Fourier series have definite parity with respect to two points; all cosines are symmetric with respect to the origin while all sines are antisymmetric with respect to x=0;cos(2nx) and sin([2n+1]x) for integral n are also symmetric with respect to x=π/2 while all other Fourier basis functions are antisymmetric with respect to the same point. Such symmetries can be exploited in numerical calculations; for example, computing the angular Mathieu functions using N basis functions can be split into four uncoupled eigenproblems each of dimension N/4. It is natural to ask: Are there other classes of functions with similar symmetries? Using concepts from computer graphics, we prove that all functions which are symmetric with respect to two points separated by a distance L must be spatially periodic with period 4L. We also prove that the only function which is of definite parity with respect to three distinct points must be a constant. These theorems define parity in the usual sense of a global property such that even parity with respect to the origin means f(x)=f(-x) for all x∈[-∞,∞]. We construct counterexamples to both theorems that are functions with local parity, that is, symmetry which applies only for a finite interval in x.
机译:如果所有x的f(x + L)= f(-x + L),则函数关于点x = L是对称的,如果f(x + L)=-f(-x + L),则函数是反对称的。相对于L,对称或反对称的函数被称为“确定奇偶性”。傅立叶级数的正弦和余弦相对于两个点具有确定的奇偶性。所有余弦相对于原点对称,而所有正弦相对于x = 0反对称;对于积分n,cos(2nx)和sin([2n + 1] x)也相对于x =π/ 2对称,而所有其他傅立叶基函数对于同一点都是反对称的。可以在数值计算中利用这种对称性。例如,使用N个基函数计算角度Mathieu函数可分为四个非耦合特征问题,每个特征问题的维数为N / 4。很自然地会问:是否存在其他具有相似对称性的功能类别?使用计算机图形学中的概念,我们证明了关于两个距离L对称的点对称的所有函数必须在空间上具有周期4L周期性。我们还证明,相对于三个不同的点具有绝对奇偶性的唯一函数必须是常数。这些定理从全局属性的通常意义上定义了奇偶校验,使得对于所有x∈[-∞,∞],相对于原点的奇偶校验意味着f(x)= f(-x)。我们对两个定理构造反例,这两个定理都是具有局部奇偶性的函数,即对称性仅适用于x中的有限区间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号