...
首页> 外文期刊>Analytical and bioanalytical chemistry >An integrated microfluidic chip enabling control and spatially resolved monitoring of temperature in micro flow reactors
【24h】

An integrated microfluidic chip enabling control and spatially resolved monitoring of temperature in micro flow reactors

机译:集成的微流控芯片可实现对微流反应器中温度的控制和空间分辨监测

获取原文
获取原文并翻译 | 示例
           

摘要

A strength of microfluidic chip laboratories is the rapid heat transfer that, in principle, enables a very homogeneous temperature distribution in chemical processes. In order to exploit this potential, we present an integrated chip system where the temperature is precisely controlled and monitored at the microfluidic channel level. This is realized by integration of a luminescent temperature sensor layer into the fluidic structure together with inkjet-printed micro heating elements. This allows steering of the temperature at the microchannel level and monitoring of the reaction progress simultaneously. A fabrication procedure is presented that allows for straightforward integration of thin polymer layers with optical sensing functionality in microchannels of glass-polydimethylsiloxane (PDMS) chips of only 150 mu m width and 29 mu m height. Sensor layers consisting of polyacrylonitrile and a temperature-sensitive ruthenium tris-phenanthroline probe with film thicknesses of about 0.5 to 6 mu m were generated by combining blade coating and abrasion techniques. Optimal coating procedures were developed and evaluated. The chip-integrated sensor layers were calibrated and investigated with respect to stability, reproducibility, and response times. These microchips allowed observation of temperature in a wide range with a signal change of around 1.6 % per K and a maximum resolution of around 0.07 K. The device is employed to study temperature-controlled continuous micro flow reactions. This is demonstrated exemplarily for the tryptic cleavage of coumarin-modified peptides via fluorescence detection.
机译:微流体芯片实验室的优势在于快速的热传递,从原理上讲,它可以在化学过程中实现非常均匀的温度分布。为了开发这种潜力,我们提出了一种集成芯片系统,其中在微流体通道水平上可以精确地控制和监视温度。这是通过将发光温度传感器层与喷墨打印的微型加热元件集成到流体结构中来实现的。这允许在微通道水平上控制温度并同时监测反应进程。提出了一种制造程序,该程序允许将具有光学传感功能的薄聚合物层直接集成在宽度仅为150μm和高度为29μm的玻璃-聚二甲基硅氧烷(PDMS)芯片的微通道中。通过结合刮涂和磨蚀技术,产生了由聚丙烯腈和对温度敏感的钌三邻菲咯啉探针组成的传感器层,其膜厚约为0.5至6μm。制定并评估了最佳涂层程序。对芯片集成的传感器层进行了校准,并就稳定性,可重复性和响应时间进行了研究。这些微芯片允许在宽范围内观察温度,信号变化约为每K 1.6%,最大分辨率约为0.07K。该设备用于研究温度控制的连续微流反应。通过荧光检测示例性地证明了香豆素修饰的肽的胰蛋白酶切割。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号