...
首页> 外文期刊>Analytical chemistry >Mechanism of Protein Supercharging by Sulfolane and m-Nitrobenzyl Alcohol: Molecular Dynamics Simulations of the Electrospray Process
【24h】

Mechanism of Protein Supercharging by Sulfolane and m-Nitrobenzyl Alcohol: Molecular Dynamics Simulations of the Electrospray Process

机译:环丁砜和间硝基苄醇对蛋白质的增压机理:电喷雾过程的分子动力学模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Electrospray ionization (ESI) allows the production of intact gas-phase ions from proteins in solution. Nondenaturing solvent conditions usually culminate in low ESI charge states. However, many mass spectrometric applications benefit from protein ions that are more highly charged. One way to boost protein charge is the addition of supercharging agents (SCAs) such as sulfolane or m-nitrobenzyl alcohol (m-NBA) to the aqueous solution. The supercharging mechanism remains controversial. We use molecular dynamics (MD) simulations to examine how SCAs affect the behavior of ESI nanodroplets. Simulations were conducted on myoglobin in water, water/sulfolane, and water/m-NBA.Na+ ions served as surrogate charge carriers instead of H+. We focus on conditions where the protein initially adopts its native conformation. MD-generated charge states show remarkable agreement with experimental data. Droplet shrinkage is accompanied by Na+ ejection, consistent with the ion evaporation model (IEM). The droplets segregate into an outer SCA shell and an aqueous core. This core harbors protein and Na+. Unfavorable SCA solvation restricts Na+ access to the droplet surface, thereby impeding IEM ejection. Rapid water loss causes SCA enrichment, ultimately forcing all remaining Na+ to bind the protein. IEM ejection is no longer feasible after this point, such that the protein becomes supercharged by Na+ trapping. SCA-free droplets produce lower charge states because the aqueous environment ensures a higher IEM efficiency. For all scenarios examined here, proteins are released via solvent evaporation to dryness, as envisioned by the charged residue model. Our data provide the first atomistic view of the supercharging mechanism.
机译:电喷雾电离(ESI)允许从溶液中的蛋白质产生完整的气相离子。非变性溶剂条件通常以低ESI电荷状态达到顶峰。但是,许多质谱应用程序都受益于电荷更高的蛋白质离子。提高蛋白质电荷的一种方法是在水溶液中添加诸如丁砜或间硝基苄醇(m-NBA)之类的增压剂(SCA)。增压机制仍存在争议。我们使用分子动力学(MD)模拟来检查SCA如何影响ESI纳米液滴的行为。在水中,水/环丁砜和水/ m-NBA中对肌红蛋白进行了模拟.Na +离子代替H +充当替代电荷载体。我们关注蛋白质最初采用其天然构象的条件。 MD产生的电荷状态与实验数据显示出显着的一致性。液滴收缩伴随有Na +喷射,与离子蒸发模型(IEM)一致。液滴分离为SCA外壳和水核心。该核心包含蛋白质和Na +。不利的SCA溶剂化限制了Na +进入液滴表面,从而阻碍了IEM喷射。快速的水分流失会导致SCA富集,最终迫使所有剩余的Na +与蛋白质结合。在此之后,IEM喷射不再可行,因此蛋白质会因Na +捕获而变得超负荷。不含SCA的液滴产生较低的电荷状态,因为水性环境可确保较高的IEM效率。对于这里检查的所有情况,如带电残渣模型所设想的那样,蛋白质会通过溶剂蒸发释放到干燥状态。我们的数据提供了增压机制的第一个原子视图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号