首页> 外文期刊>Analytical chemistry >Subnanomolar Detection Limit of Stripping Voltammetric Ca~(2+)-Selective Electrode: Effects of Analyte Charge and Sample Contamination
【24h】

Subnanomolar Detection Limit of Stripping Voltammetric Ca~(2+)-Selective Electrode: Effects of Analyte Charge and Sample Contamination

机译:溶出伏安法Ca〜(2+)选择电极的亚纳摩尔检测极限:分析物电荷和样品污染的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Ultrasensitive ion-selective electrode measurements based on stripping voltammetry are an emerging sensor technology with low- and subnanomolar detection limits. Here, we report on stripping voltammetry of down to 0.1 nM Ca~(2+) by using a thin-polymer-coated electrode and demonstrate the advantageous effects of the divalent charge on sensitivity. A simple theory predicts that the maximum concentration of an analyte ion preconcentrated in the thin membrane depends exponentially on the charge and that the current response based on exhaustive ion stripping from the thin membrane is proportional to the square of the charge. The theoretical predictions are quantitatively confirmed by using a thin ionophore-doped polymer membrane spin-coated on a conducting-polymer-modified electrode. The potentiostatic transfer of hydrophilic Ca~(2+) from an aqueous sample into the hydrophobic double-polymer membrane is facilitated by an ionophore with high Ca~(2+) affinity and selectivity. The resultant concentration of the Ca~(2+)-ionophore complex in the ~1 μm-thick membrane can be at least 5 × 10~6 times higher than the aqueous Ca~(2+) concentration. The stripping voltammetric current response to the divalent ion is enhanced to achieve a subnanomolar detection limit under the condition where a low-nanomolar detection limit is expected for a monovalent ion. Significantly, charge-dependent sensitivity is attractive for the ultrasensitive detection of multivalent ions with environmental and biomedical importance such as heavy metal ions and polyionic drugs. Importantly, this stripping voltammetric approach enables the absolute determination of subnanomolar Ca~(2+) contamination in ultrapure water containing 10 mM supporting electrolytes, i.e., an 8 orders of magnitude higher background concentration.
机译:基于溶出伏安法的超灵敏离子选择电极测量是一种新兴的传感器技术,具有低和亚纳摩尔级的检测极限。在这里,我们报道了使用薄聚合物涂层电极对低至0.1 nM Ca〜(2+)的溶出伏安法的研究,并证明了二价电荷对灵敏度的有利影响。一个简单的理论预测,薄膜中预富集的分析物离子的最大浓度与电荷成指数关系,并且基于从薄膜中彻底抽出离子的电流响应与电荷的平方成正比。通过使用旋涂在导电聚合物改性电极上的掺杂离子载体的聚合物薄膜可以定量地确认理论预测。具有高Ca〜(2+)亲和性和选择性的离子载体促进了亲水性Ca〜(2+)从水性样品到疏水性双聚合物膜的恒电位转移。 〜1μm厚膜中Ca〜(2 +)-离子载体复合物的最终浓度至少比Ca〜(2+)水溶液的浓度高5×10〜6倍。在预期单价离子的纳摩尔检测限较低的条件下,对二价离子的溶出伏安电流响应得到增强,以达到亚纳摩尔检测限。重要的是,电荷依赖性灵敏度对于具有环境和生物医学重要性的多价离子(如重金属离子和聚离子药物)的超灵敏检测具有吸引力。重要的是,这种溶出伏安法可以绝对测定含有10 mM支持电解质(即,背景浓度高8个数量级)的超纯水中的亚纳摩尔Ca〜(2+)污染。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号