首页> 外文期刊>Analytical chemistry >Patterning Multiplex Protein Microarrays in a Single Microfluidic Channel
【24h】

Patterning Multiplex Protein Microarrays in a Single Microfluidic Channel

机译:在单个微流控通道中模式化多重蛋白微阵列。

获取原文
获取原文并翻译 | 示例
           

摘要

The development of versatile biofunctional surfaces is a fundamental prerequisite in designing Lab on a Chip (LOC) devices for applications in biosensing interfaces and microbioreactors. The current paper presents a rapid combinatorial approach to create multiplex protein patterns in a single microfluidic channel. This approach consists of coupling microcontact printing with microfluidic patterning, where microcontact printing is employed for silanization using (3-Aminopropyl) triethoxysilane (APTES), followed by micro-fluidic patterning of multiple antibodies. As a result, the biomolecules of choice could be covalently attached to the microchannel surface, thus creating a durable and highly resistant functional interface. Moreover, the experimental procedure was designed to create a microfluidic platform that maintains functionality at high flow rates. The functionalized surfaces were characterized using X-ray photoelectron spectroscopy (XPS) and monitored with fluorescence microscopy at each step of functionalization. To illustrate the possibility of patterning multiple biomolecules along the cross section of a single microfluidic channel, microarrays of five different primary antibodies were patterned onto a single channel and their functionality was evaluated accordingly through a multiplex immunoassay using secondary antibodies specific to each patterned primary antibody. The resulting patterns remained stable at shear stresses of up to 50 dyn/cm~(2). The overall findings suggest that the developed multiplex functional interface on a single channel can successfully lead to highly resistant multiplex functional surfaces for high throughput biological assays.
机译:多功能生物功能表面的开发是设计用于生物传感界面和微生物反应器的芯片实验室(LOC)设备的基本前提。目前的论文提出了一种快速的组合方法,以在单个微流体通道中创建多重蛋白质模式。该方法包括将微接触印刷与微流控图案耦合,其中将微接触印刷用于使用(3-氨基丙基)三乙氧基硅烷(APTES)进行硅烷化,然后对多种抗体进行微流控图案化。结果,所选择的生物分子可以共价附接到微通道表面,从而产生持久且高度抗性的功能界面。此外,设计了实验程序以创建在高流速下保持功能的微流体平台。使用X射线光电子能谱(XPS)对功能化的表面进行表征,并在功能化的每个步骤中使用荧光显微镜对其进行监控。为了说明沿单个微流体通道的横截面图案化多个生物分子的可能性,将五个不同一抗的微阵列图案化到单个通道上,并通过多重免疫分析使用相应于每个已图案化一抗的特异性二抗,通过相应的功能对其功能进行评估。所得图案在高达50 dyn / cm〜(2)的剪切应力下保持稳定。总的发现表明,在单通道上开发的多重功能界面可以成功地产生高抗性的多重功能表面,用于高通量生物测定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号