首页> 外文期刊>Analytical chemistry >Probing Colloid-Substratum Contact Stiffness by Acoustic Sensing in a Liquid Phase
【24h】

Probing Colloid-Substratum Contact Stiffness by Acoustic Sensing in a Liquid Phase

机译:在液相中通过声传感探测胶体-基质接触刚度

获取原文
获取原文并翻译 | 示例
           

摘要

In a quartz crystal microbalance, particles adhering to a sensor crystal are perturbed around their equilibrium positions via thickness-shear vibrations at the crystal's fundamental frequency and overtones. The amount of adsorbed molecular mass is measured as a shift in resonance frequency. In inertial loading, frequency shifts are negative and proportional to the adsorbed mass, in contrast with "elastic loading", where particles adhere via small contact points. Elastic loading in air yields positive frequency shifts according to a coupled resonance model. We explore here the novel application of a coupled resonance model for colloidal particle adhesion in a liquid phase theoretically and demonstrate its applicability experimentally. Particles with different radii and in the absence and presence of ligand-receptor binding showed evidence of coupled resonance. By plotting the frequency shifts versus the quartz crystal microbalance with dissipation overtone number, frequencies of zero-crossing could be inferred, indicative of adhesive bond stiffness. As a novelty of the model, it points to a circular relation between bandwidth versus frequency shift, with radii indicative of bond stiffness. The model indicates that bond stiffness for bare silica particles adhering on a crystal surface is determined by attractive Lifshitz-van der Waals and ionic-strength-dependent, repulsive electrostatic forces. In the presence of ligand-receptor interactions, softer interfaces develop that yield stiffer bonds due to increased contact areas. In analogy with molecular vibrations, the radii of adhering particles strongly affect the resonance frequencies, while bond stiffness depends on environmental parameters to a larger degree than for molecular adsorption.
机译:在石英晶体微天平中,粘附在传感器晶体上的颗粒会通过晶体基本频率和泛音上的厚度剪切振动而在其平衡位置周围受到干扰。所吸附的分子量的量被测量为共振频率的偏移。在惯性负载中,频移为负,并且与吸附的质量成比例,与“弹性负载”相反,在“弹性负载”中,粒子通过较小的接触点粘附。根据耦合共振模型,空气中的弹性负载会产生正的频移。我们在理论上探索了耦合共振模型在液相中对胶体颗粒粘附的新应用,并通过实验证明了其适用性。具有不同半径且不存在和存在配体-受体结合的粒子显示出耦合共振的证据。通过绘制频移对具有耗散泛音数的石英晶体微天平的关系,可以推断出零交叉的频率,这表明了粘合剂的粘合刚度。作为该模型的新奇之处,它指出了带宽与频移之间的圆形关系,半径表示键合刚度。该模型表明,粘附在晶体表面上的裸露二氧化硅颗粒的粘结刚度由有吸引力的Lifshitz-van der Waals和依赖离子强度的排斥静电力决定。在配体-受体相互作用的存在下,由于接触面积的增加,形成了较软的界面,从而产生了较硬的键。与分子振动类似,粘附粒子的半径会强烈影响共振频率,而键合刚度取决于环境参数的程度要大于分子吸附的程度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号