首页> 外文期刊>Analytical chemistry >Improving the Stability and Sensing of Electrochemical Biosensors by Employing Trithiol-Anchoring Groups in a Six-Carbon Self-Assembled Monolayer
【24h】

Improving the Stability and Sensing of Electrochemical Biosensors by Employing Trithiol-Anchoring Groups in a Six-Carbon Self-Assembled Monolayer

机译:通过在六碳自组装单分子膜中使用三硫醇固定基团来提高电化学生物传感器的稳定性和传感。

获取原文
获取原文并翻译 | 示例
       

摘要

Alkane thiol self-assembled monolayers (SAMs) have seen widespread utility in the fabrication of electrochemical biosensors. Their utility, however, reflects a potentially significant compromise. While shorter SAMs support efficient electron transfer, they pack poorly and are thus relatively unstable. Longer SAMs are more stable but suffer from less efficient electron transfer, thus degrading sensor performance. Here we use the electrochemical DNA (E-DNA) sensor platform to compare the signaling and stability of biosensors fabricated using a short, six-carbon monothiol with those employing either of two commercially available trihexylthiol anchors (a flexible Letsinger type and a rigid adamantane type). We find that all three anchors support efficient electron transfer and E-DNA signaling, with the gain, specificity, and selectivity of all three being effectively indistinguishable. The stabilities of the three anchors, however, vary significantly. Sensors anchored with the flexible trithiol exhibit enhanced stability, retaining 75percent of their original signal and maintaining excellent signaling properties after 50 days storage in buffer. Likewise these sensors exhibit excellent temperature stability and robustness to electrochemical interrogation. The stability of sensors fabricated using the rigid trithiol anchor, by comparison, are similar to those of the monothiol, with both exhibiting significant (>60percent) loss of signal upon wet storage or thermocycling. Employing a flexible trithiol anchor in the fabrication of SAM-based electrochemical biosensors may provide a means of improving sensor robustness without sacrificing electron transfer efficiency or otherwise impeding sensor performance.
机译:烷烃硫醇自组装单层(SAMs)在电化学生物传感器的制造中已广泛使用。但是,它们的效用反映了潜在的重大折衷。尽管较短的SAM支持有效的电子转移,但它们的包装较差,因此相对不稳定。较长的SAM更稳定,但电子传输效率较低,因此会降低传感器性能。在这里,我们使用电化学DNA(E-DNA)传感器平台来比较使用短六碳一硫醇与采用两种市售三己基硫醇锚定剂(灵活的Letsinger型和刚性的金刚烷型)制造的生物传感器的信号传导和稳定性。 )。我们发现,所有三个锚点都支持有效的电子转移和E-DNA信号传导,而这三个锚点的增益,特异性和选择性实际上是无法区分的。但是,三个锚点的稳定性差异很大。锚定有柔性三硫醇的传感器显示出增强的稳定性,在缓冲液中保存50天后,保留了其原始信号的75%,并保持了出色的信号传递性能。同样,这些传感器具有出色的温度稳定性和对电化学询问的鲁棒性。相比之下,使用刚性三硫醇锚制成的传感器的稳定性类似于单硫醇,在湿存储或热循环时,二者均显示出明显的信号损失(> 60%)。在基于SAM的电化学生物传感器的制造中使用柔性三硫醇锚定物可提供提高传感器鲁棒性而不牺牲电子传递效率或以其他方式阻碍传感器性能的手段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号