...
首页> 外文期刊>Analytical chemistry >Charger: Combination of signal processing and statistical learning algorithms for precursor charge-state determination from electron-transfer dissociation spectra
【24h】

Charger: Combination of signal processing and statistical learning algorithms for precursor charge-state determination from electron-transfer dissociation spectra

机译:充电器:结合信号处理和统计学习算法,可根据电子转移解离光谱确定前体电荷状态

获取原文
获取原文并翻译 | 示例

摘要

Tandem mass spectrometry in combination with liquid chromatography has emerged as a powerful tool for characterization of complex protein mixtures in a high-throughput manner. One of the bioinformatics challenges posed by the mass spectral data analysis is the determination of precursor charge when unit mass resolution is used for detecting fragment ions. The charge-state information is used to filter database sequences before they are correlated to experimental data. In the absence of the accurate charge state, several charge states are assumed. This dramatically increases database search times. To address this problem, we have developed an approach for charge-state determination of peptides from their tandem mass spectra obtained in fragmentations via electron-transfer dissociation (ETD) reactions. Protein analysis by ETD is thought to enhance the range of amino acid sequences that can be analyzed by mass spectrometry-based proteomics. One example is the improved capability to characterize phosphorylated peptides. Our approach to charge-state determination uses a combination of signal processing and statistical machine learning. The signal processing employs correlation and convolution analyses to determine precursor masses and charge states of peptides. We discuss applicability of these methods to spectra of different charge states. We note that in our applications correlation analysis outperforms the convolution in determining peptide charge states. The correlation analysis is best suited for spectra with prevalence of complementary ions. It is highly specific but is dependent on quality of spectra. The linear discriminant analysis (LDA) approach uses a number of other spectral features to predict charge states. We train LDA classifier on a set of manually curated spectral data from a mixture of proteins of known identity. There are over 5000 spectra in the training set. A number of features, pertinent to spectra of peptides obtained via ETD reactions, have been used in the training. The loading coefficients of LDA indicate the relative importance of different features for charge-state determination. We have applied our model to a test data set generated from a mixture of 49 proteins. We search the spectra with and without use of the charge-state determination. The charge-state determination helps to significantly save the database search times. We discuss the cost associated with the possible misclassification of I charge states.
机译:串联质谱联用液相色谱已成为一种以高通量方式表征复杂蛋白质混合物的强大工具。质谱数据分析带来的生物信息学挑战之一是当使用单位质量分辨率检测碎片离子时确定前体电荷。充电状态信息用于在数据库序列与实验数据相关之前对其进行过滤。在没有准确的充电状态的情况下,假定了几种充电状态。这大大增加了数据库搜索时间。为了解决这个问题,我们开发了一种方法,用于通过电子转移解离(ETD)反应在片段化中获得的串联质谱图来确定肽的电荷状态。通过ETD进行的蛋白质分析被认为可以增加可通过基于质谱的蛋白质组学分析的氨基酸序列的范围。一个例子是提高了鉴定磷酸化肽的能力。我们确定电荷状态的方法结合了信号处理和统计机器学习的功能。信号处理采用相关和卷积分析来确定肽的前体质量和电荷状态。我们讨论了这些方法对不同电荷态谱的适用性。我们注意到,在我们的应用中,相关性分析在确定肽电荷状态方面优于卷积。相关分析最适合于存在互补离子的光谱。它具有很高的特异性,但取决于光谱的质量。线性判别分析(LDA)方法使用许多其他光谱特征来预测电荷状态。我们从一组已知身份的蛋白质混合物中,在一组手动精选的光谱数据上训练LDA分类器。训练集中有超过5000个光谱。在训练中已经使用了许多与通过ETD反应获得的肽谱有关的特征。 LDA的负载系数表明不同特征对于充电状态确定的相对重要性。我们已将模型应用于由49种蛋白质的混合物生成的测试数据集。我们在使用和不使用充电状态确定的情况下搜索光谱。充电状态确定有助于显着节省数据库搜索时间。我们讨论与I收费状态可能分类错误相关的成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号