首页> 外文期刊>Analytical chemistry >Electrochemical Sensing Platform Based on the Highly Ordered Mesoporous Carbon-Fullerene System
【24h】

Electrochemical Sensing Platform Based on the Highly Ordered Mesoporous Carbon-Fullerene System

机译:基于高阶介孔碳-富勒烯体系的电化学传感平台

获取原文
获取原文并翻译 | 示例
       

摘要

In this paper, we report a novel all-carbon two-dimensionally ordered nanocomposite electrode system on the basis of the consideration of host-guest chemistry, which utilizes synergistic interactions between a nanostructured matrix of ordered mesoporous carbon (OMC) and an excellent electron acceptor of nanosized fullerene (C_(60)) to facilitate heterogeneous electron-transfer processes. The integration of OMC-C_(60) by covalent interaction, especially its electrochemical applications for electrocatalysis, has not been explored thus far. Such integration may even appear to be counterintuitive because OMC and C_(60) provide opposite electrochemical benefits in terms of facilitating heterogeneous electron-transfer processes. Nevertheless, the present work demonstrates the integration of OMC and C_(60) can provide a remarkable synergistic augmentation of the current. To illuminate the concept, eight kinds of inorganic and organic electroactive compounds were employed to study the electrochemical response at an OMC-C_(60) modified glassy carbon (OMC-C_(60)/GC) electrode for the first time, which shows more favorable electron-transfer kinetics than OMC/GC, carbon nanotube modified GC, C_(60)/GC, and GC electrodes. Such electrocatalytic behavior at OMC-C_(60)/GC electrode could be attributed to the unique physicochemical properties of OMC and C_(60), especially the unusual host-guest synergy of OMC-C_(60), which induced a substantial decrease in the overvoltage for NADH oxidation compared with GC electrode. The ability of OMC-C_(60) to promote electron transfer not only suggests a new platform for the development of dehydrogenase-based bioelectrochemical devices but also indicates a potential of OMC-C_(60) to be of a wide range of sensing applications because the electrocatalysis of different electroactive compounds at the OMC-C_(60)/GC electrode in this work should be a good model for constructing a novel and promising electrochemical sensing platform for further electrochemical detection of other biomolecules.
机译:在本文中,我们在考虑宿主-客体化学的基础上,报告了一种新颖的全碳二维有序纳米复合电极系统,该系统利用有序介孔碳(OMC)的纳米结构基质与出色的电子受体之间的协同相互作用纳米富勒烯(C_(60))的结构,以促进异质电子转移过程。迄今为止,尚未探索通过共价相互作用的OMC-C_(60)的整合,尤其是其电化学应用在电催化中的应用。由于OMC和C_(60)在促进异质电子转移过程方面提供了相反的电化学益处,因此这种集成甚至似乎是违反直觉的。尽管如此,目前的工作证明了OMC和C_(60)的集成可以为电流提供显着的协同增强。为了阐明这一概念,首次使用了八种无机和有机电活性化合物来研究在OMC-C_(60)修饰的玻碳(OMC-C_(60)/ GC)电极上的电化学响应,这表明了更多比OMC / GC,碳纳米管修饰的GC,C_(60)/ GC和GC电极具有更好的电子传输动力学。在OMC-C_(60)/ GC电极上的这种电催化行为可以归因于OMC和C_(60)的独特理化性质,尤其是OMC-C_(60)的不寻常的主客体协同作用,这导致了OMC-C_(60)/ GC_(60)与GC电极相比,NADH氧化的过电压。 OMC-C_(60)促进电子转移的能力不仅为基于脱氢酶的生物电化学装置的开发提供了一个新平台,而且还表明了OMC-C_(60)的广泛应用潜力,因为在这项工作中,不同的电活性化合物在OMC-C_(60)/ GC电极上的电催化应该是构建新型有前途的电化学传感平台以进一步电化学检测其他生物分子的良好模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号