首页> 外文期刊>Analytical chemistry >Monitoring the Electroosmotic Flow in Capillary Electrophoresis Using Contactless Conductivity Detection and Thermal Marks
【24h】

Monitoring the Electroosmotic Flow in Capillary Electrophoresis Using Contactless Conductivity Detection and Thermal Marks

机译:使用非接触式电导检测和热标记监测毛细管电泳中的电渗流

获取原文
获取原文并翻译 | 示例
       

摘要

The fundamental aspects and the capillary electrophoresis usage of thermal marks are presented. The so-called thermal mark is a perturbation of the electrolyte concentration generated by a punctual heating of the capillary while the separation electric field is maintained. The heating pulse is obtained by powering tungsten filaments or surface mount device resistors with 5 V during a few tens to hundreds of milliseconds. In the proposed model, the variation of the transport numbers with the rising temperature leads to the formation of low- and high-concentration regions during the heating. After cooling down, the initial mobilities of the species are restored and these regions (the thermal mark) migrate chiefly due to the electroosmotic flow (EOF). The mark may be recorded with a conductivity detector as part of a usual electropherogram and be used to index the analyte peaks and thus compensate for variations of the EOF. In a favorable case, 10 mmol/L KCl solution, the theory suggests that the error in the measurement of EOF mobility by this mean is only -6.5 X 10~(-7) cm~(2) V~(-1) s~(-1). The method was applied to the analysis of alkaline ions in egg white, and the relative standard deviations of the corrected mobilities of these ions were smaller than 1percent. This is a challenging matrix, because albumin reduces the EOF to 20percent of its initial value after 11 runs. The combination of thermal mark, electrolysis separated, and contactless conductivity detection allowed the measurement of the EOF of a silica capillary with unbuffered KCl solution with constant ionic strength. The overall approach is advantageous, because one can easily control the chemical composition of the solution in contact with the inner surface of the capillary.
机译:介绍了热标记的基本方面和毛细管电泳的用法。所谓的热标记是在维持分离电场的同时对毛细管的点加热产生的电解质浓度的扰动。加热脉冲是通过在几十到几百毫秒的时间内为钨丝或表面安装设备电阻器提供5 V电压来获得的。在提出的模型中,传输数随温度的升高而变化,导致在加热过程中形成低浓度和高浓度区域。冷却后,物种的初始迁移率得以恢复,这些区域(热标记)主要由于电渗流(EOF)迁移。该标记可以用电导检测器作为常规电泳图的一部分进行记录,并用于索引分析物峰,从而补偿EOF的变化。在10 mmol / L KCl溶液的有利情况下,该理论表明,以这种平均值测量EOF迁移率时的误差仅为-6.5 X 10〜(-7)cm〜(2)V〜(-1)s 〜(-1)。该方法用于蛋清中的碱性离子分析,这些离子的校正迁移率的相对标准偏差小于1%。这是一个具有挑战性的矩阵,因为在运行11次后白蛋白将EOF降低至其初始值的20%。热标记,电解分离和非接触式电导率检测的结合,可以使用具有恒定离子强度的无缓冲KCl溶液测量硅胶毛细管的EOF。总体方法是有利的,因为可以容易地控制与毛细管的内表面接触的溶液的化学组成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号