首页> 外文期刊>Analytical chemistry >Tortuosity of Porous Particles
【24h】

Tortuosity of Porous Particles

机译:多孔颗粒的曲折度

获取原文
获取原文并翻译 | 示例
       

摘要

Tortuosity is often used as an adjustable parameter in models of transfer properties through porous media. This parameter, not reducible to classical measured micro-structural parameters like specific surface area, porosity, or pore size distribution, reflects the efficiency of percolation paths, which is linked to me topology of the material. The measurement of the effective conductivity of a bed of particles saturated with an electrolyte is a simple way to evaluate tortuosity. Nevertheless, it received only little attention because of the real difficulties in both getting reliable results and interpreting data. Notably, me discrimination between the contribution of interparticle and intraparticle porosities to the tortuosity is not resolved. To our knowledge, there is no model able to fit the experimental data of the tortuosity of a suspension, and a fortiori of a particle bed, in the whole porosity range. Only empirical expressions have been proposed, but they do not allow deriving intratortuosity of a porous particle. For a dilute system, Maxwell's equation predicts the effective conductivity of suspensions of spherical particles as a function of the bulk electrolyte conductivity and of particle conductivity. The intraparticle tortuosity can be derived from the particle conductivity obtained from the Maxwell equation applied to data at infinite dilution of particles. Then, by assuming that the Maxwell equation is a first-order approximation of the conductivity as a function of porosity, we propose an explicit relation of the tortuosity r of a suspension of porous particles, obtained by conductivity measurement, as tau = tau(epsilon, epsilon_p, tau_p), where epsilon is the total porosity of the suspension, tau_p is the intraparticle tortuosity, and epsilon_p is the particle porosity. This relationship fits the experimental data in the whole porosity range and can be used to determine tau_p from an experiment at only one porosity. Finally, the obtained values of tau_p for a set of porous particles used in chromatography are discussed and compared to the data available in the literature.
机译:在通过多孔介质的传递特性模型中,曲折度通常用作可调参数。该参数无法还原为经典的测量微观结构参数(例如比表面积,孔隙率或孔径分布),它反映了渗流路径的效率,这与材料的拓扑结构有关。测量被电解质饱和的颗粒床的有效电导率是评估曲折性的简单方法。然而,由于获得可靠结果和解释数据方面的实际困难,它几乎没有受到关注。值得注意的是,在颗粒间和颗粒内孔隙度对曲折度的贡献之间的区别尚未解决。据我们所知,没有一个模型能够在整个孔隙率范围内拟合悬浮液曲折度和颗粒床孔度的实验数据。仅提出了经验表达,但是它们不允许推导多孔颗粒的曲折度。对于稀薄系统,麦克斯韦方程式预测球形颗粒悬浮液的有效电导率是整体电解质电导率和颗粒电导率的函数。粒子内部的曲折度可以从在粒子无限稀释下应用于数据的麦克斯韦方程式获得的粒子电导率中得出。然后,通过假设麦克斯韦方程是电导率与孔隙率的函数的一阶近似,我们提出了通过电导率测量获得的多孔颗粒悬浮液曲折度r的明确关系,如tau = tau(epsilon (epsilon_p,tau_p),其中epsilon是悬浮液的总孔隙率,tau_p是颗粒内部的曲折度,epsilon_p是颗粒的孔隙度。该关系适合整个孔隙率范围内的实验数据,并且可以用于从仅一个孔隙率的实验确定tau_p。最后,讨论了色谱中使用的一组多孔颗粒的tau_p值,并将其与文献中的数据进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号