首页> 外文期刊>Analytical chemistry >Temperature profiles and heat dissipation in capillary electrophoresis
【24h】

Temperature profiles and heat dissipation in capillary electrophoresis

机译:毛细管电泳中的温度曲线和散热

获取原文
获取原文并翻译 | 示例
       

摘要

While temperature control is usually employed in capillary electrophoresis (CE) to aid heat dissipation and provide acceptable precision, internal electrolyte temperatures are almost never measured. In principle, this limits the accuracy, repeatability, and method robustness. Ibis work presents a fundamental study that combines the development of new equations characterizing temperature profiles in CE with a new method of temperature determination. New equations were derived from first principles relating the mean, axial, and inner wall electrolyte temperatures (T-Mean, T-Axis, T-Wall). T-Mean was shown to occur at a distance 1/root 3 times the internal radius of the capillary from the center of the capillary and to be a weighted average of 2/3T(Axis) and 1/3T(Wall). Conductance (G) and electroosmotic mobility (mu(EOF)) can be used to determine T-Mean and T-Wall, respectively. Extrapolation of curves of mu(EOF) versus power per unit length (P/L) at different temperatures was used to calibrate the variation of mu(EOF) with temperature (7), free from Joule heating effects. mu(EOF) increased at 2.22%/degrees C. The experimentally determined temperatures Using mu(EOF) agreed to within 0.2 degrees C with those determined using G. The accuracy of G measurements was confirmed independently by measuring the electrical conductivity (K) of the bulk electrolyte over a range of temperatures and by calculating the variation of G with T from the Debye-Hilckel-Onsager equation. T-Mean was found to be up to 20 degrees C higher than the external temperature under typical conditions using active air-cooling and a 74.0-mu m-internal diameter (d(i)) fused-silica capillary. A combination of experimentally determined and calculated temperatures enables a complete temperature profile for a fused-silica capillary to be drawn and the thickness of the stationary air layer to be determined. As an example, at P/L = 1.00 Wm(-1), the determined radial temperature difference across the electrolyte was 0.14 degrees C; the temperature difference across the fused-silica wall was 0.17 degrees C, across the poly(imide) coating was 0.13 degrees C, and across the stationary air layer was 2.33 degrees C.
机译:尽管通常在毛细管电泳(CE)中使用温度控制来帮助散热并提供可接受的精度,但几乎从未测量过内部电解质温度。原则上,这限制了准确性,可重复性和方法的鲁棒性。 Ibis的工作提出了一项基础研究,该研究将表征CE中温度曲线的新方程式的开发与温度确定的新方法结合在一起。从有关平均,轴向和内壁电解质温度(T均值,T轴,T壁)的第一原理得出了新的方程式。 T均值显示在距毛细管中心半径3倍的毛细管内半径的1 /根处,并且是2 / 3T(轴)和1 / 3T(壁)的加权平均值。电导率(G)和电渗迁移率(mu(EOF))可分别用于确定T均值和T壁。 mu(EOF)对每单位长度功率(P / L)在不同温度下的曲线的外推用于校准mu(EOF)随温度(7)的变化,而不受焦耳热效应的影响。 mu(EOF)以2.22%/℃的速率增加。使用mu(EOF)的实验确定温度与使用G确定的温度相吻合在0.2摄氏度以内。G测量的准确性通过测量电导率(K)独立确定。在一定温度范围内,通过从Debye-Hilckel-Onsager方程计算G随T的变化来计算整体电解质。使用主动空气冷却和74.0μm内径(d(i))熔融石英毛细管,在典型条件下,T均值比外部温度高20摄氏度。通过实验确定和计算的温度的组合,可以绘制出熔融石英毛细管的完整温度曲线,并确定固定空气层的厚度。例如,在P / L = 1.00 Wm(-1)时,确定的整个电解质径向温度差为0.14摄氏度;熔融石英壁的温差为0.17摄氏度,聚酰亚胺涂层的温差为0.13摄氏度,固定空气层的温差为2.33摄氏度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号