首页> 外文期刊>Analytical chemistry >Determination of the capacitance of solid-state potentiometric sensors: An electrochemical time-of-flight method
【24h】

Determination of the capacitance of solid-state potentiometric sensors: An electrochemical time-of-flight method

机译:固态电位计传感器电容的确定:电化学飞行时间方法

获取原文
获取原文并翻译 | 示例
           

摘要

A dual microelectrode electrochemical time-of-flight technique in which diffusion flux of Ag+, Cl-, or H+ ions electrochemically produced at a generator electrode is measured by recording potential-time transients with Ag, Ag/AgCl, or iridium oxide potentiometric microsensors, respectively, is developed. The generator and microsensor electrodes are typically spaced by 50-100 mu m and are incorporated in the lithographically fabricated thin-layer-type devices. Under conditions of moderate rates of the ion electrogeneration, the potential-time (E-t) transients recorded with the three microsensors show excellent agreement with theory involving linear diffusion equations and the experimentally determined Nernstian slopes of the microsensors. However, when the generator current, or the initial concentration of the primary ion of interest is low, appreciable delays in the recorded E-t transients are observed due to the finite capacitance of the micropotentiometric sensors. The recorded delay in the E-t transients can be quantitatively accounted for by including the sensor capacitance (C) in the theoretical description of the transients. Direct comparison between the theoretical and the experimental E-t transients yields the sensor's capacitance. This capability of our new technique is unique in that it allows determination of the capacitance of a potentiometric sensor at open circuit. In the cases of silver electrodes, this method results in C = 31 +/- 2 mu F/ cm(2), a value that is in agreement with those obtained by other methods. The results for silver chloride sensors yield a C in the range of 100-140 +/- 10 mu F/cm(2). The specific values depend on sensor preparation and the resulting roughness of the Ag/AgCl interface. Iridium oxide sensors show a capacitance that linearly depends on the thickness of the film. Specific capacitance of these microporous films was determined to be 59 +/- 6 F/cm(3).
机译:双微电极电化学飞行时间技术,其中通过用Ag,Ag / AgCl或氧化铱电位微传感器记录电位-时间瞬变来测量在发生器电极上电化学产生的Ag +,Cl-或H +离子的扩散通量,分别开发。发生器电极和微传感器电极通常间隔50-100微米,并结合在光刻制造的薄层型器件中。在中等速率的离子电产生的条件下,用三个微传感器记录的电位-时间(E-t)瞬变与涉及线性扩散方程的理论和实验确定的微传感器的能斯登斜率具有极好的一致性。但是,当发生器电流或感兴趣的主离子的初始浓度较低时,由于微电势传感器的有限电容,在记录的E-t瞬变中会观察到明显的延迟。 E-t瞬态中记录的延迟可以通过在瞬态的理论描述中包括传感器电容(C)来定量解决。在理论上和实验上的E-t瞬变之间进行直接比较即可得出传感器的电容。我们新技术的这种能力是独一无二的,因为它可以确定开路电位计传感器的电容。对于银电极,此方法的结果为C = 31 +/- 2μF / cm(2),该值与通过其他方法获得的值一致。氯化银传感器的结果得出的C范围为100-140 +/- 10μF/ cm(2)。具体值取决于传感器的准备工作以及所产生的Ag / AgCl界面的粗糙度。氧化铱传感器显示的电容线性取决于薄膜的厚度。这些微孔膜的比电容确定为59 +/- 6 F / cm(3)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号