首页> 外文期刊>Analytical chemistry >Phase-changing sacrificial materials for interfacing microfluidics with ion-permeable membranes to create on-chip preconcentrators and electric field gradient focusing microchips
【24h】

Phase-changing sacrificial materials for interfacing microfluidics with ion-permeable membranes to create on-chip preconcentrators and electric field gradient focusing microchips

机译:相变牺牲材料,用于将微流体与离子渗透膜连接,以创建芯片上预浓缩器和电场梯度聚焦微芯片

获取原文
获取原文并翻译 | 示例
       

摘要

We have developed a novel approach for interfacing ionically conductive membranes with microfluidic systems using phase-changing sacrificial layers. Imprinted microchannels in a polymer substrate are filled with a heated liquid that solidifies at room temperature, a monomer solution is placed over the protected channels and polymerized to form a rigid semipermeable copolymer, and then the protective layer is melted and removed, leaving an open microchannel interfaced with a polymer membrane. We have applied this method in miniaturizing electric field gradient focusing (EFGF) and carrying out on-chip protein preconcentration. A semipermeable copolymer in the EFGF microchips fills a region of changing cross-sectional area, which allows a gradient in electric field to be established when an electrical potential is applied. Our technique provides microchip EFGF devices that offer 3-fold improved resolution in protein focusing compared with capillary-based systems. In addition, these EFGF microchips can separate peptide samples with resolution similar to what is obtained in capillary electrophoresis microdevices, and the micro-EFGF systems enrich analytes by a factor of > 150. Finally, we have fabricated membrane-integrated microfluidic devices that can concentrate protein samples (R-phycoetythrin) over 10 000-fold to facilitate microchip capillary electrophoresis. Interfacing microchannels with ion-permeable membranes has great potential to enhance microchip analysis of biomolecules.
机译:我们已经开发出一种新的方法,用于使用相变牺牲层将离子导电膜与微流体系统连接。用在室温下固化的加热液体填充聚合物基材中压印的微通道,将单体溶液置于受保护的通道上并聚合形成刚性的半透性共聚物,然后将保护层熔化并除去,留下开放的微通道与聚合物膜接触。我们已将此方法应用于最小化电场梯度聚焦(EFGF)和执行芯片上蛋白质预浓缩。 EFGF微芯片中的半渗透性共聚物填充了横截面积变化的区域,当施加电势时,可以建立电场梯度。我们的技术提供的微芯片EFGF设备与基于毛细管的系统相比,在蛋白质聚焦方面的分辨率提高了3倍。此外,这些EFGF微芯片可以分离分辨率与毛细管电泳微设备中相似的肽样品,并且micro-EFGF系统富集分析物的比例>150。最后,我们制造了可以浓缩的膜集成微流体设备蛋白质样品(R-藻红蛋白)超过10000倍,以促进微芯片毛细管电泳。微通道与离子渗透膜的接口具有巨大的潜力,可以增强生物分子的微芯片分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号