首页> 外文期刊>Analytical chemistry >A Random Walk through Electron-Transfer Kinetics
【24h】

A Random Walk through Electron-Transfer Kinetics

机译:电子传递动力学的随机游走

获取原文
获取原文并翻译 | 示例
       

摘要

Simulating the random motion of molecules at an electrode can help determine when an electrochemical reaction becomes kinetically controlled. In common electrochemical usage, a "kinetically controlled reaction" is one in which the transport of redox molecules is fast relative to the rate of electron transfer at the electrode-electrolyte interface. Increasing diffusion rates to reach the kinetic limit is a central concept of many electroanalytical techniques used to investigate electron-transfer kinetics (1, 2). For example, in cyclic voltammetry experiments of freely diffusing redox species, the electrode reaction rate becomes controlled by electron-transfer kinetics at sufficiently high potential sweep rates, a consequence of increased diffusion rates as the sweep rate is increased (3-5). In this article, we discuss the role of collisional encounters between the redox molecule and electrode in determining when an electrochemical reaction becomes kinetically controlled. Brownian dynamics simulations of the random motion of redox molecules provide insights into the physical factors that determine the kinetic limit in steady-state voltammetric measurements using electrodes with nanometer dimensions.
机译:模拟电极上分子的随机运动可以帮助确定电化学反应何时变为动力学控制的。在通常的电化学用途中,“动力学控制的反应”是其中氧化还原分子的传输相对于电极-电解质界面处的电子转移速率而言是快速的反应。增加扩散速率以达到动力学极限是许多用于研究电子转移动力学的电分析技术的中心概念(1、2)。例如,在自由扩散的氧化还原物质的循环伏安法实验中,电极反应速率在足够高的电势扫描速率下受到电子转移动力学的控制,这是随着扫描速率增加而扩散速率增加的结果(3-5)。在本文中,我们讨论了氧化还原分子和电极之间碰撞的碰撞在确定电化学反应何时变为动力学控制时的作用。氧化还原分子随机运动的布朗动力学模拟提供了对物理因素的见解,这些物理因素决定了使用纳米尺寸电极在稳态伏安法测量中的动力学极限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号