...
首页> 外文期刊>Angewandte Chemie >General Synthesis and Gas-Sensing Properties of Multiple-Shell Metal Oxide Hollow Microspheres
【24h】

General Synthesis and Gas-Sensing Properties of Multiple-Shell Metal Oxide Hollow Microspheres

机译:多壳金属氧化物空心微球的一般合成和气敏性能

获取原文
获取原文并翻译 | 示例

摘要

Hollow spheres with nanometer-to-micrometer dimensions, controlled internal structure, and shell composition have attracted tremendous attention because of their potential application in catalysis, drug delivery, nanoreactors, energy conversion and storage systems, photonic devices, chemical sensors, and biotechnology.Single-shell and double-shell hollow spheres of various compositions have been synthesized by a number of methods, such as vesicles, emulsions, micelles, gas-bubble, and hard-templating methods. More recently, efforts have focused on the fabrication of hollow spheres with multiple shells, as these materials are expected to have better properties for applications such as drug release with prolonged release time, heterogeneous catalysis, lithium-ion batteries, and photocatalysis. For example, multiple-shell hollow microspheres of Cu2O have been prepared by vesicle templating and an intermediate-templating phase-transformation process. Multiple-shell azithromycin hollow microspheres were fabricated by hierarchical assembly.Cao and co-workers reported the synthesis of triple-shelled SnO2 hollow microspheres by chemically induced self-assembly in the hydrothermal environment which exhibited enhanced electrochemical performance. Yao and co-workers reported excellent cycle performance and enhanced lithium storage capacity of multiple-shell Co3O4 hollow microspheres synthesized by oriented self-assembly. These preparative methods, however, are suited for each specific material and cannot be applied generally to a wide range of materials. Currently, there is no general synthetic approach for fabricating multiple-shell hollow nanostructures of any desired material.
机译:具有纳米至微米尺寸,可控的内部结构和壳成分的空心球因其在催化,药物输送,纳米反应器,能量转换和存储系统,光子设备,化学传感器和生物技术中的潜在应用而备受关注。通过许多方法,例如囊泡,乳剂,胶束,气泡和硬模板法,已经合成了各种组成的β-壳和双壳空心球。最近,努力集中在制造具有多个壳的空心球上,因为人们期望这些材料具有更好的性能,例如具有较长释放时间的药物释放,非均相催化,锂离子电池和光催化。例如,已经通过囊泡模板化和中间模板相变法制备了Cu2O的多壳空心微球。多层组装法制备了多壳阿奇霉素空心微球。Cao及其同事报道了在水热环境中化学诱导自组装合成三壳SnO2空心微球的电化学性能增强。姚和他的同事报告说,通过定向自组装合成的多壳Co3O4中空微球具有出色的循环性能和增强的锂储存能力。然而,这些制备方法适用于每种特定的材料,并且通常不能广泛地应用于各种材料。当前,没有通用的合成方法来制造任何所需材料的多壳中空纳米结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号