...
首页> 外文期刊>American Journal of Physiology >Adenine nucleotide-creatine-phosphate module in myocardial metabolic system explains fast phase of dynamic regulation of oxidative phosphorylation.
【24h】

Adenine nucleotide-creatine-phosphate module in myocardial metabolic system explains fast phase of dynamic regulation of oxidative phosphorylation.

机译:心肌代谢系统中的腺嘌呤核苷酸-肌酸-磷酸模块解释了氧化磷酸化动态调节的快速阶段。

获取原文
获取原文并翻译 | 示例

摘要

Computational models of a large metabolic system can be assembled from modules that represent a biological function emerging from interaction of a small subset of molecules. A "skeleton model" is tested here for a module that regulates the first phase of dynamic adaptation of oxidative phosphorylation (OxPhos) to demand in heart muscle cells. The model contains only diffusion, mitochondrial outer membrane (MOM) permeation, and two isoforms of creatine kinase (CK), in cytosol and mitochondrial intermembrane space (IMS), respectively. The communication with two neighboring modules occurs via stimulation of mitochondrial ATP production by ADP and P(i) from the IMS and via time-varying cytosolic ATP hydrolysis during contraction. Assuming normal cytosolic diffusion and high MOM permeability for ADP, the response time of OxPhos (t(mito); generalized time constant) to steps in cardiac pacing rate is predicted to be 2.4 s. In contrast, with low MOM permeability, t(mito) is predicted to be 15 s. An optimized MOM permeability of 21 mum/s gives t(mito) = 3.7 s, in agreement with experiments on rabbit heart with blocked glycolytic ATP synthesis. The model correctly predicts a lower t(mito) if CK activity is reduced by 98%. Among others, the following predictions result from the model analysis: 1) CK activity buffers large ADP oscillations; 2) ATP production is pulsatile in beating heart, although it adapts slowly to demand with "time constant" approximately 14 heartbeats; 3) if the muscle isoform of CK is overexpressed, OxPhos reacts slower to changing workload; and 4) if mitochondrial CK is overexpressed, OxPhos reacts faster.
机译:可以从代表小分子子集相互作用产生的生物学功能的模块中组装大型代谢系统的计算模型。在此处测试了“骨架模型”,该模块可调节氧化磷酸化(OxPhos)对心肌细胞需求的动态适应的第一阶段。该模型仅包含扩散,线粒体外膜(MOM)渗透和肌酸激酶(CK)的两个同工型,分别位于细胞质和线粒体膜间空间(IMS)中。与两个相邻模块的通信是通过ADP和P(i)从IMS刺激线粒体ATP产生,以及在收缩过程中随时间变化的胞质ATP水解而发生的。假设ADP的正常细胞质扩散和高MOM渗透性,OxPhos对心脏起搏速率阶跃的响应时间(t(mito);广义时间常数)预计为2.4 s。相反,在MOM渗透率较低的情况下,预计t(mito)为15 s。最佳的MOM渗透性为21 mum / s,得出t(mito)= 3.7 s,这与糖酵解ATP合成受阻的兔子心脏实验一致。如果CK活性降低98%,则该模型可以正确预测较低的t(mito)。其中,以下是模型分析得出的预测:1)CK活动可以缓冲较大的ADP振荡; 2)ATP的产生在跳动的心脏中具有搏动性,尽管它以“时间常数”大约14个心跳缓慢适应需求。 3)如果CK的肌肉同种型过表达,OxPhos对工作量变化的反应较慢;和4)如果线粒体CK过表达,OxPhos的反应会更快。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号