首页> 外文期刊>ACS applied materials & interfaces >Pulse-Reverse Electrodeposition and Micromachining of Graphene-Nickel Composite: An Efficient Strategy toward High-Performance Microsystem Application
【24h】

Pulse-Reverse Electrodeposition and Micromachining of Graphene-Nickel Composite: An Efficient Strategy toward High-Performance Microsystem Application

机译:石墨烯-镍复合材料的脉冲反向电沉积和微加工:高性能微系统应用的有效策略。

获取原文
获取原文并翻译 | 示例
       

摘要

Graphene reinforced nickel (Ni) is an intriguing nanocomposite with tremendous potential for microelectromechanical system (MEMS) applications by remedying mechanical drawbacks of the metal matrix for device optimization, though very few related works have been reported. In this paper, we developed a pulse-reverse electrodeposition method for synthesizing graphene-Ni (G-Ni) composite microcomponents with high content and homogeneously dispersed graphene filler. While the Vickers hardness is largely enhanced by 2.7-fold after adding graphene, the Young's modulus of composite under dynamic condition shows similar to 1.4-fold increase based on the raised resonant frequency of a composite microcantilever array. For the first time, we also demonstrate the application of G-Ni composite in microsystems by fabricating a Si micromirror with the composite supporting beams as well as investigate the long-term stability of the mirror at resonant vibration. Compared with the pure Ni counterpart, the composite mirror shows an apparently lessened fluctuations of resonant frequency and scanning angle due to a suppressed plastic deformation even under the sustaining periodic loading. This can be ascribed to the reduced grain size of Ni matrix and dislocation hindering in the presence of graphene by taking into account the crystalline refinement strengthen mechanism. The rational discussions also imply that the strong interface and efficient load transfer between graphene layers and metal matrix play an important role for improving stiffness in composite. It is believed that a proper design of graphene metal composite makes it a promising structural material candidate for advanced micromechanical devices.
机译:石墨烯增强的镍(Ni)是一种耐人寻味的纳米复合材料,通过弥补金属基体的机械缺陷来优化器件,在微机电系统(MEMS)应用中具有巨大的潜力,尽管相关工作报道很少。在本文中,我们开发了一种脉冲反向电沉积方法,用于合成具有高含量且均匀分散的石墨烯填料的石墨烯-Ni(G-Ni)复合微组分。添加石墨烯后,维氏硬度大大提高了2.7倍,但基于复合微悬臂阵列提高的共振频率,在动态条件下复合材料的杨氏模量显示出约1.4倍的增加。我们还首次通过制造具有复合支撑梁的Si微镜,并研究了反射镜在共振振动下的长期稳定性,证明了G-Ni复合材料在微系统中的应用。与纯镍相比,复合镜由于抑制了塑性变形,即使在持续的周期性载荷下,也显示出共振频率和扫描角的波动明显减少。通过考虑晶体细化强化机理,可以归因于Ni基体的减小的晶粒尺寸和在石墨烯存在下阻碍的位错。合理的讨论还暗示,石墨烯层与金属基体之间的牢固界面和有效的载荷传递对于提高复合材料的刚度起着重要作用。据信,石墨烯金属复合材料的适当设计使其成为用于先进微机械装置的有希望的结构材料候选。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号