首页> 外文期刊>ACS applied materials & interfaces >Silicon-Rich Silicon Carbide Hole-Selective Rear Contacts for Crystalline-Silicon-Based Solar Cells
【24h】

Silicon-Rich Silicon Carbide Hole-Selective Rear Contacts for Crystalline-Silicon-Based Solar Cells

机译:用于基于晶体硅的太阳能电池的富含硅的碳化硅孔选择后触点

获取原文
获取原文并翻译 | 示例
           

摘要

The use of passivating contacts compatible with typical homojunction thermal processes is one of the most promising approaches to realizing high-efficiency silicon solar cells. In this work, we investigate an alternative rear-passivating contact targeting facile implementation to industrial p-type solar cells. The contact structure consists of a chemically grown thin silicon oxide layer, which is capped with a boron-doped silicon-rich silicon carbide [SiCx(p)] layer and then annealed at 800-900 degrees C. Transmission electron microscopy reveals that the thin chemical oxide layer disappears upon thermal annealing up to 900 degrees C, leading to degraded surface passivation. We interpret this in terms of a chemical reaction between carbon atoms in the SiCx(p) layer and the adjacent chemical oxide layer. To prevent this reaction, an intrinsic silicon interlayer was introduced between the chemical oxide and the SiCx(p) layer. We show that this intrinsic silicon interlayer is beneficial for surface passivation. Optimized passivation is obtained with a 10-nm-thick intrinsic silicon interlayer, yielding an emitter saturation current density of 17 fA cm(-2) on p-type wafers, which translates into an implied open-circuit voltage of 708 mV. The potential of the developed contact at the rear side is further investigated by realizing a proof-of-concept hybrid solar cell, featuring a heterojunction front-side contact made of intrinsic amorphous silicon and phosphorus-doped amorphous silicon. Even though the presented cells are limited by front-side reflection and front-side parasitic absorption, the obtained cell with a V-oc, of 694.7 mV, a FF of 79.1%, and an efficiency of 20.44% demonstrates the potential of the p(+)/p-wafer full-side-passivated rear-side scheme shown here.
机译:与典型的同质结热处理工艺兼容的钝化触点的使用是实现高效硅太阳能电池最有希望的方法之一。在这项工作中,我们研究了一种针对工业p型太阳能电池的易于实现的替代后钝化接触。接触结构由化学生长的薄氧化硅层组成,其上覆盖有掺硼的富硅碳化硅[SiCx(p)]层,然后在800-900摄氏度下退火。透射电子显微镜显示该薄在高达900摄氏度的温度下进行退火时,化学氧化物层会消失,从而导致表面钝化性能下降。我们用SiCx(p)层和相邻化学氧化物层中碳原子之间的化学反应来解释这一点。为了防止该反应,在化学氧化物和SiCx(p)层之间引入了本征硅中间层。我们证明了这种本征硅中间层对于表面钝化是有益的。使用10 nm厚的本征硅中间层可以获得最佳的钝化效果,在p型晶片上产生的发射极饱和电流密度为17 fA cm(-2),这意味着隐含的开路电压为708 mV。通过实现概念验证的混合太阳能电池,进一步研究了在后侧形成的触点的电势,该混合太阳能电池具有由本征非晶硅和磷掺杂的非晶硅制成的异质结正面触点。即使出现的电池受到正面反射和正面寄生吸收的限制,获得的电池的V-oc为694.7 mV,FF为79.1%,效率为20.44%,证明了p的潜力。 (+)/ p晶圆全侧钝化后侧方案如图所示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号