...
首页> 外文期刊>ACS applied materials & interfaces >Engineering a Dual-Layer Chitosan-Lactide Hydrogel To Create Endothelial Cell Aggregate-Induced Microvascular Networks In Vitro and Increase Blood Perfusion In Vivo
【24h】

Engineering a Dual-Layer Chitosan-Lactide Hydrogel To Create Endothelial Cell Aggregate-Induced Microvascular Networks In Vitro and Increase Blood Perfusion In Vivo

机译:工程双层壳聚糖-丙交酯水凝胶以体外创建内皮细胞聚集体诱导的微血管网络并增加体内血液灌注

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Here, we report the use of chemically cross linked and photo-cross-linked hydrogels to engineer human umbilical vein endothelial cell (HUVEC) aggregate-induced microvascular networks to increase blood perfusion in vivo. First, we studied the effect of chemically cross-linked and photo-cross-linked chitosan lactide hydrogels on stiffness, degradation rates, and HUVEC behaviors. The photo-cross linked hydrogel was relatively stiff (E = similar to 15 kPa) and possessed more compact networks, denser surface texture, and lower enzymatic degradation rates than the relatively soft, chemically cross-linked hydrogel (E = similar to 2 kPa). While both hydrogels exhibited nontoxicity, the soft chemically cross-linked hydrogels expedited the formation of cell aggregates compared to the photo-cross-linked hydrogels. Cells on the less stiff, chemically cross-linked hydrogels expressed more matrix metalloproteinase (MMP) activity than the stiffer, photo-cross-linked hydrogel. This difference in MMP activity resulted in, a more dramatic decrease in mechanical stiffness after 3 days of incubation for the chemically cross-linked hydrogel, as compared to the photo-cross-linked one. After determining the physical and biological properties of each hydrogel, we accordingly engineered a dual-layer hydrogel construct consisting of the relatively soft, chemically cross-linked hydrogel layer for HUVEC encapsulation, and the relatively stiff, acellular, photo-cross-linked hydrogel for retention of cell-laden microvasculature above. This dual-layer hydrogel construct enabled a lasting HUVEC aggregate-induced microvascular network due to the combination of stable substrate, enriched cell adhesion molecules, and extracellular matrix proteins. We tested the dual-layer hydrogel construct in a mouse model of hind-limb ischemia, where the HUVEC aggregate-induced microvascular networks significantly enhanced blood perfusion rate to ischemic legs and decreased tissue necrosis compared with both no treatment and nonaggregated HUVEC-loaded hydrogels within 2 weeks. This study suggests an effective means for regulating hydrogel properties to facilitate a stable, HUVEC aggregate-induced microvascular network for a variety of vascularized tissue applications.
机译:在这里,我们报告化学交联和光交联的水凝胶的使用,以工程化人脐静脉内皮细胞(HUVEC)聚集体诱导的微血管网络,以增加体内血液灌注。首先,我们研究了化学交联和光交联的壳聚糖丙交酯水凝胶对硬度,降解率和HUVEC行为的影响。与相对较软的化学交联水凝胶(E =约2 kPa)相比,与光交联的水凝胶相对较硬(E =约15 kPa),具有更紧密的网络,更致密的表面纹理和较低的酶促降解速率。 。尽管两种水凝胶均显示出无毒性,但与光交联的水凝胶相比,软化学交联的水凝胶可加快细胞聚集体的形成。与较硬的,光交联的水凝胶相比,在较硬的,化学交联的水凝胶上的细胞表达的基质金属蛋白酶(MMP)活性更高。与光交联的水凝胶相比,化学交联的水凝胶孵育3天后,MMP活性的这种差异导致机械刚度的下降更为显着。在确定每种水凝胶的物理和生物学特性之后,我们相应地设计了一个双层水凝胶结构,该结构由用于HUVEC封装的相对较软的,化学交联的水凝胶层和相对较硬的,无细胞的,光交联的水凝胶组成。保留上面充满细胞的微血管。由于稳定的底物,丰富的细胞粘附分子和细胞外基质蛋白的结合,这种双层水凝胶构建体使持久的HUVEC聚集体诱导的微血管网络成为可能。我们在后肢缺血的小鼠模型中测试了双层水凝胶构建体,与未治疗和未聚集HUVEC的水凝胶相比,HUVEC聚集体诱导的微血管网络显着提高了对缺血腿的血液灌注速率,并减少了组织坏死2周。这项研究提出了一种有效的调节水凝胶特性的方法,以促进稳定的HUVEC聚集体诱导的微血管网络的多种血管化组织应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号