首页> 外文期刊>ACS applied materials & interfaces >Proton Reduction Using a Hydrogenase-Modified Nanoporous Black Silicon Photoelectrode
【24h】

Proton Reduction Using a Hydrogenase-Modified Nanoporous Black Silicon Photoelectrode

机译:使用氢化酶修饰的纳米多孔黑硅光电极还原质子

获取原文
获取原文并翻译 | 示例
       

摘要

Metalloenzymes featuring earth-abundant metal-based cores exhibit rates for catalytic processes such as hydrogen evolution comparable to those of noble metals. Realizing these superb catalytic properties in artificial systems is challenging owing to the difficulty of effectively interfacing metalloenzymes with an electrode surface in a manner that supports efficient charge-transfer. Here, we demonstrate that a nanoporous black silicon (b-Si) photocathode provides a unique interface for binding an adsorbed [FeFe]-hydrogenase enzyme ([FeFe]-H(2)ase). The resulting [FeFe]-H(2)ase/b-Si photoelectrode displays a 280 mV more positive onset potential for hydrogen generation than bare b-Si without hydrogenase, similar to that observed for a b-Si/Pt photoelectrode at the same light intensity. Additionally, we show that this H(2)ase/b-Si electrode exhibits a turnover frequency of >= 1300 s(-1) and a turnover number above 10(7) and sustains current densities of at least 1 mA/cm(2) based on the actual surface area of the electrode (not the smaller projected geometric area), orders of magnitude greater than that observed for previous enzyme-catalyzed electrodes. While the long-term stability of hydrogenase on the b-Si surface remains too low for practical applications, this work extends the proof-of-concept that biologically derived metalloenzymes can be interfaced with inorganic substrates to support technologically relevant current densities.
机译:具有丰富的基于地球的金属核的金属酶表现出的催化过程速率(例如析氢)与贵金属相当。由于难以以支持有效电荷转移的方式有效地将金属酶与电极表面连接,因此在人工系统中实现这些出色的催化性能具有挑战性。在这里,我们证明了纳米多孔黑硅(b-Si)阴极为结合吸附的[FeFe]-氢化酶([FeFe] -H(2)ase)提供了独特的界面。所得的[FeFe] -H(2)ase / b-Si光电极比没有氢化酶的裸b-Si显示出更高的280 mV正向产生氢的正电势,类似于在同一时间对b-Si / Pt光电极观察到的正电势。光强度。此外,我们显示此H(2)ase / b-Si电极的周转频率> = 1300 s(-1),周转数高于10(7),并且电流密度至少为1 mA / cm( 2)基于电极的实际表面积(不是较小的投影几何面积),比以前的酶催化电极观察到的数量级大。虽然对于实际应用而言,氢化酶在b-Si表面的长期稳定性仍然太低,但这项工作扩展了概念证明,即生物衍生的金属酶可以与无机底物接触,以支持技术上相关的电流密度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号