首页> 外文期刊>ACS applied materials & interfaces >Promoting the Performance of Layered-Material Photodetectors by Alloy Engineering
【24h】

Promoting the Performance of Layered-Material Photodetectors by Alloy Engineering

机译:通过合金工程提升层状材料光电探测器的性能

获取原文
获取原文并翻译 | 示例
       

摘要

The successful peeling of graphene heralded the era of van der Waals material (vdWM) electronics. However, photodetectors based on semiconducting transition metal dichalcogenides (TMDs), formulated as MX2 (M = Mo, W; X = S, Se), often suffer either poor responsivity or long response time because of their high density of deep-level defect states (DLDSs). Alloy engineering, which can shift the DLDSs to shallow-level defect states, is proposed to be an efficient strategy to solve this problem. However, proof-of-concept is still lacking, which is probably because of the absence of a facile technology to grow high-quality alloyed TMDs. Here, we report the growth of large-scale and high quality Mo0.5W0.5S2 alloy films via pulsed laser deposition (PLD). We demonstrate that the resulting Mo0.5W0.5S2 photodetector possesses a stable photoresponse from 370 to 1064 nm. The photocurrent exhibits positive dependence on both the source drain voltage and incident power density, providing good tunability for multifunctional photoelectrical applications. We also establish that, because of the suppression of DLDSs with alloy engineering, the Mo0.5W0.5S2 photodetector achieves a good responsivity of 5.8 A/W and a response time shorter than 150 ms. The working mechanism for the suppression of DLDSs in Mo0.5W0.5S2 is unveiled by qualitatively analyzing the alloying-dressed band structure. In conclusion, the excellent performance of the PLD-grown Mo0.5W0.5S2 photodetector may pave the way for next-generation photodetection. The approach shown here represents a fundamental and universal scenario for the development of alloyed TMDs.
机译:石墨烯的成功剥离预示了范德华材料(vdWM)电子学的时代。但是,基于半导体过渡金属二硫化碳(TMD)的光电探测器,公式化为MX2(M = Mo,W; X = S,Se),由于其高密度的深层缺陷状态而经常会出现响应速度较慢或响应时间较长的情况(DLDS)。合金工程可以将DLDS转变为浅层缺陷状态,被认为是解决这一问题的有效策略。但是,仍然缺乏概念验证,这可能是因为缺乏用于生产高质量合金化TMD的便捷技术。在这里,我们报告了通过脉冲激光沉积(PLD)的大规模,高质量Mo0.5W0.5S2合金膜的生长。我们证明了所得的Mo0.5W0.5S2光电探测器具有从370到1064 nm的稳定光响应。光电流对源极漏极电压和入射功率密度均表现出正相关性,为多功能光电应用提供了良好的可调性。我们还确定,由于采用合金工程技术可抑制DLDS,因此Mo0.5W0.5S2光电探测器可实现5.8 A / W的良好响应度,且响应时间短于150毫秒。通过定性分析合金化带的结构,揭示了抑制Mo0.5W0.5S2中DLDS的作用机理。总之,PLD生长的Mo0.5W0.5S2光电探测器的出色性能可能为下一代光电探测铺平道路。此处显示的方法代表了合金化TMD开发的基本和通用方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号