首页> 外文期刊>ACS applied materials & interfaces >Optimizing Bacteriophage Surface Densities for Bacterial Capture and Sensing in Quartz Crystal Microbalance with Dissipation Monitoring
【24h】

Optimizing Bacteriophage Surface Densities for Bacterial Capture and Sensing in Quartz Crystal Microbalance with Dissipation Monitoring

机译:通过耗散监测优化噬菌体表面密度,以用于石英晶体微天平中的细菌捕获和传感

获取原文
获取原文并翻译 | 示例
       

摘要

Surface immobilized bacteriophages (phages) are increasingly used as biorecognition elements on bacterial biosensors (e.g., on acoustical, electrical, or optical platforms). The phage surface density is a critical factor determining a sensor's bacterial binding efficiencies; in fact, phage surface densities that are too low or too high can result in significantly reduced bacterial binding capacities. Identifying an optimum phage surface density is thus crucial when exploiting the bacteriophages' bacterial capture capabilities in biosensing applications. Herein) we investigated surface immobilization of the Pseudomonas aeruginosa specific E79 (tailed) phage and the Salmonella Typhimurium specific PRD1 (nontailed) phage and their subsequent bacterial capture abilities using quartz crystal microbalance with dissipation monitoring (QCM-D). The QCM-D was used in two experimental setups: (i) a conventional setup and (ii) a combined setup with ellipsometry. Both setups were exploited to link the phages' immobilization behaviors to their bacterium capture efficiency. While E79 displayed characteristic optima in both the mechanical (QCM-D) and the optical (ellipsometry) data that coincided with its specific bacterial capture optimum, no optima were observed during PRD1 immobilization. The characteristic optima suggests that the E79 phage undergoes a surface rearrangement event that changes the hydration state of the phage film, thereby impairing the E79 phage's ability to capture bacteria. However, the absence of such optima during deposition of the nontailed PRD1 phage suggests that other mechanisms may also lead to reduced bacterial capture by surface immobilized bacteriophages.
机译:表面固定的噬菌体(噬菌体)被越来越多地用作细菌生物传感器上(例如,在声学,电或光学平台上)的生物识别元件。噬菌体表面密度是决定传感器细菌结合效率的关键因素。实际上,噬菌体表面密度太低或太高都会导致细菌结合能力大大降低。因此,在生物传感应用中利用噬菌体的细菌捕获能力时,确定最佳噬菌体表面密度至关重要。本文中)我们使用耗散监测(QCM-D)石英晶体微天平调查了铜绿假单胞菌特异性E79(尾部)噬菌体和鼠伤寒沙门氏菌特异性PRD1(无尾部)噬菌体的表面固定及其随后的细菌捕获能力。 QCM-D用于两个实验装置:(i)常规装置和(ii)椭偏仪的组合装置。利用这两种设置将噬菌体的固定行为与其细菌捕获效率联系起来。虽然E79在机械(QCM-D)和光学(椭圆偏光)数据中均显示出最佳的特性,这与其特定的细菌捕获最优值相吻合,但在PRD1固定过程中未观察到最优。最佳的特征暗示E79噬菌体经历了表面重排事件,该事件改变了噬菌体膜的水合状态,从而损害了E79噬菌体捕获细菌的能力。但是,在无尾PRD1噬菌体沉积过程中没有这种最佳状态,这表明其他机制也可能导致表面固定的噬菌体减少细菌捕获。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号