首页> 外文期刊>Contributions to Plasma Physics >Control of the Interface Between Electron-Hole and Electron-Ion Plasmas: Hybrid Semiconductor-Gas Phase Devices as a Gateway for Plasma Science
【24h】

Control of the Interface Between Electron-Hole and Electron-Ion Plasmas: Hybrid Semiconductor-Gas Phase Devices as a Gateway for Plasma Science

机译:电子孔和电子离子等离子体之间的界面控制:混合半导体气相装置作为等离子体科学的门户

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Coupling electron-hole (e~-- h~+) and electron-ion plasmas across a narrow potential barrier with a strong electric field provides an interface between the two plasma genres and a pathway to electronic and photonic device functionality. The magnitude of the electric field present in the sheath of a low temperature, nonequilibrium microplasma is sufficient to influence the band structure of a semiconductor region in immediate proximity to the solid-gas phase interface. Optoelectronic devices demonstrated by leveraging this interaction are described here. A hybrid microplasma/semiconductor photodetector, having a Si cathode in the form of an inverted square pyramid encompassing a neon microplasma, exhibits a photosensitivity in the ~ 420 - 1100 nm region as high as 3.5 A/W. Direct tunneling of electrons into the collector and the Auger neutralization of ions arriving at the Si surface appear to be facilitated by an n-type inversion layer at the cathode surface resulting from bandbending by the microplasma sheath electric field. Recently, an npn plasma bipolar junction transistor (PBJT), in which a low temperature plasma serves as the collector in an otherwise Si device, has also been demonstrated. Having a measured small signal current gain h_(fe) as large as 10, this phototransistor is capable of modulating and extinguishing the collector plasma with emitter-base bias voltages <1 V. Electrons injected into the base when the emitter-base junction is forward-biased serve primarily to replace conduction band electrons lost to the collector plasma by secondary emission and ion-enhanced field emission in which ions arriving at the base-collector junction deform the electrostatic potential near the base surface, narrowing the potential barrier and thereby facilitating the tunneling of electrons into the collector. Of greatest significance, therefore, are the implications of active, plasma/solid state interfaces as a new frontier for plasma science. Specifically, the PBJT provides the first opportunity to control the electronic properties of a material at the boundary of, and interacting with, a plasma. By specifying the relative number densities of free (conduction band) and bound (valence band) electrons at the base-collector interface, the PBJT's emitter-base junction is able to dictate the rates of secondary electron emission (including Auger neutralization) at the semiconductor-plasma interface, thereby offering the ability to vary at will the effective secondary electron emission coefficient for the base surface.
机译:跨越狭窄的势垒和强电场将电子空穴(e〜-h〜+)和电子离子等离子体耦合,提供了两种等离子体类型之间的界面以及通往电子和光子设备功能的途径。低温非平衡微等离子体的鞘层中存在的电场强度足以影响紧靠固-气相界面的半导体区域的能带结构。本文描述了利用这种相互作用演示的光电设备。混合的微等离子体/半导体光电探测器,具有包围霓虹灯微等离子体的倒置方形金字塔形式的Si阴极,在420至1100 nm范围内具有高达3.5 A / W的光敏性。电子的直接隧穿进入集电极以及到达Si表面的离子的俄歇中和作用似乎是由于微等离子体鞘电场的能带弯曲而在阴极表面形成的n型反型层所促进的。近来,还已经证明了一种npn等离子体双极结型晶体管(PBJT),其中低温等离子体用作其他Si器件中的集电极。测得的小信号电流增益h_(fe)高达10,该光电晶体管能够以小于1 V的发射极-基极电压调制和熄灭集电极等离子体。当发射极-基极结正向时,电子注入基极偏压的作用主要是通过二次发射和离子增强场发射来替代失去到集电极等离子体中的导带电子,其中到达基极-集电极结的离子会使基极表面附近的静电势变,从而使势垒变窄,从而有助于电子隧穿到集电极中。因此,最重要的是有源等离子体/固态界面作为等离子体科学新领域的意义。具体地说,PBJT提供了第一个机会来控制在等离子体边界处并与等离子体相互作用的材料的电子特性。通过指定基极-集电极界面上自由电子(导带)和束缚电子(价带)的相对数密度,PBJT的发射极-基极结点可以决定半导体的二次电子发射速率(包括俄歇中和) -等离子体界面,从而提供了随意改变基表面的有效二次电子发射系数的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号