首页> 外文期刊>Corrosion Reviews >Modeling of environmentally assisted fatigue crack growth behavior
【24h】

Modeling of environmentally assisted fatigue crack growth behavior

机译:环境辅助疲劳裂纹扩展行为的建模

获取原文
获取原文并翻译 | 示例
           

摘要

It is well recognized that environment has a significant role on the failure of mechanically loaded structures. In most cases of cyclic loading, fatigue crack growth (FCG) behavior exhibits lower threshold and faster growth rate in air than in vacuum. It is well documented that the effect of loading frequency on FCG behavior can be more pronounced in aggressive environment/material systems. This is seen in the K-max term of the FCG. On the other hand, a weak dependence of FCG behavior with R ratio in inert environment indicates that a crack extension is governed mainly by Delta K. Existing experimental data indicate that the actual crack extension per cycle is associated with the rising part of the load cycle than the unloading part. In this paper, the synergetic role of environment and mechanical loading on crack growth behavior is considered to see their roles on FCG. In this article, we attempt to model how crack extension interplays between a crack-tip opening and crack-tip blunting angle associated with the applied load and environment, respectively. To support such a model for discussion, we have selected limited FCG data taken from literature corresponding to different environments ranging from vacuum to air and NaCl solution for a number of alloys and with different specimens geometries. We are also not discussing innate mechanisms for each alloy, due to space concerns.
机译:众所周知,环境对机械加载结构的破坏具有重要作用。在大多数循环载荷情况下,与真空相比,空气中的疲劳裂纹扩展(FCG)行为具有较低的阈值和更快的增长率。有充分的文献证明,加载频率对FCG行为的影响在恶劣的环境/材料系统中会更加明显。从FCG的K-max项可以看出这一点。另一方面,在惰性环境下,FCG行为对R比的依赖性较弱,表明裂纹扩展主要由Delta K控制。现有实验数据表明,每个循环的实际裂纹扩展与载荷循环的上升部分有关。比卸货部分在本文中,考虑了环境和机械载荷对裂纹扩展行为的协同作用,以了解它们在FCG上的作用。在本文中,我们尝试对裂纹扩展如何与施加的载荷和环境相关的裂纹尖端开口和裂纹尖端钝角之间的相互作用进行建模。为了支持这种模型的讨论,我们从文献中选择了有限的FCG数据,这些数据对应于从真空到空气以及NaCl溶液的不同环境,适用于多种合金和不同试样几何形状。由于篇幅所限,我们也没有讨论每种合金的固有机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号