...
首页> 外文期刊>Chemistry: A European journal >Multiple keys for a single lock: The unusual structural plasticity of the nucleotidyltransferase (4′)/kanamycin complex
【24h】

Multiple keys for a single lock: The unusual structural plasticity of the nucleotidyltransferase (4′)/kanamycin complex

机译:单个锁的多个钥匙:核苷酸转移酶(4')/卡那霉素复合物的异常结构可塑性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The most common mode of bacterial resistance to aminoglycoside antibiotics is the enzyme-catalysed chemical modification of the drug. Over the last two decades, significant efforts in medicinal chemistry have been focused on the design of non- inactivable antibiotics. Unfortunately, this strategy has met with limited success on account of the remarkably wide substrate specificity of aminoglycoside-modifying enzymes. To understand the mechanisms behind substrate promiscuity, we have performed a comprehensive experimental and theoretical analysis of the molecular-recognition processes that lead to antibiotic inactivation by Staphylococcus aureus nucleotidyltransferase 4′(ANT(4′)), a clinically relevant protein. According to our results, the ability of this enzyme to inactivate structurally diverse polycationic molecules relies on three specific features of the catalytic region. First, the dominant role of electrostatics in aminoglycoside recognition, in combination with the significant extension of the enzyme anionic regions, confers to the protein/antibiotic complex a highly dynamic character. The motion deduced for the bound antibiotic seem to be essential for the enzyme action and probably provide a mechanism to explore alternative drug inactivation modes. Second, the nucleotide recognition is exclusively mediated by the inorganic fragment. In fact, even inorganic triphosphate can be employed as a substrate. Third, ANT(4′) seems to be equipped with a duplicated basic catalyst that is able to promote drug inactivation through different reactive geometries. This particular combination of features explains the enzyme versatility and renders the design of non-inactivable derivatives a challenging task. Under lock and key: A comprehensive analysis of substrate recognition by the aminoglycoside-modifying enzyme ANT(4′) has been performed. The results highlight the dynamic character of the different drug complexes and provide insights into the subtle strategies employed by these proteins to achieve substrate promiscuity (see figure).
机译:细菌对氨基糖苷抗生素的耐药性最常见的模式是药物的酶催化化学修饰。在过去的二十年中,药物化学领域的重大努力一直集中在不可灭活的抗生素的设计上。不幸的是,由于氨基糖苷修饰酶的底物特异性非常广泛,该策略仅获得了有限的成功。为了解底物滥交背后的机制,我们对分子识别过程进行了全面的实验和理论分析,这些过程导致金黄色葡萄球菌核苷酸转移酶4'(ANT(4'))(一种临床相关蛋白)导致抗生素失活。根据我们的结果,该酶灭活结构多样的聚阳离子分子的能力取决于催化区域的三个特定特征。首先,静电在氨基糖苷识别中的主要作用,与酶阴离子区域的显着扩展相结合,赋予蛋白质/抗生素复合物高度动态的特性。推导结合抗生素的运动似乎对酶的作用至关重要,并且可能提供了探索替代药物灭活模式的机制。其次,核苷酸识别仅由无机片段介导。实际上,甚至无机三磷酸酯也可以用作底物。第三,ANT(4')似乎配备有重复的碱性催化剂,该催化剂能够通过不同的反应几何结构促进药物灭活。这种特殊的功能组合说明了酶的多功能性,并使非灭活衍生物的设计成为一项艰巨的任务。在钥匙下:对氨基糖苷修饰酶ANT(4')对底物的识别进行了全面分析。结果突出显示了不同药物复合物的动态特性,并提供了对这些蛋白质为实现底物滥交所采用的微妙策略的见解(见图)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号