...
首页> 外文期刊>Conservation Biology >Simulating Retention of Rare Alleles in Small Populations to Assess Management Options for Species with Different Life Histories
【24h】

Simulating Retention of Rare Alleles in Small Populations to Assess Management Options for Species with Different Life Histories

机译:模拟保留小种群中的稀有等位基因,以评估具有不同生活史的物种的管理选择

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Preserving allelic diversity is important because it provides the capacity for adaptation and thus enables long-term population viability. Allele retention is difficult to predict in animals with overlapping generations, so we used a new computer model to simulate retention of rare alleles in small populations of 3 species with contrasting life-history traits: North Island Brown Kiwi (Apteryx mantelli; monogamous, long-lived), North Island Robins (Petroica longipes; monogamous, short-lived), and red deer (Cervus elaphus; polygynous, moderate lifespan). We simulated closed populations under various demographic scenarios and assessed the amounts of artificial immigration needed to achieve a goal of retaining 90% of selectively neutral rare alleles (frequency in the source population = 0.05) after 10 generations. The number of immigrants per generation required to meet the genetic goal ranged from 11 to 30, and there were key similarities and differences among species. None of the species met the genetic goal without immigration, and red deer lost the most allelic diversity due to reproductive skew among polygynous males. However, red deer required only a moderate rate of immigration relative to the other species to meet the genetic goal because nonterritorial breeders had a high turnover. Conversely, North Island Brown Kiwi needed the most immigration because the long lifespan of locally produced territorial breeders prevented a large proportion of immigrants from recruiting. In all species, the amount of immigration needed generally decreased with an increase in carrying capacity, survival, or reproductive output and increased as individual variation in reproductive success increased, indicating the importance of accurately quantifying these parameters to predict the effects of management. Overall, retaining rare alleles in a small, isolated population requires substantial investment of management effort. Use of simulations to explore strategies optimized for the populations in question will help maximize the value of this effort.
机译:保留等位基因多样性很重要,因为它提供了适应能力,因此可以长期维持种群活力。在具有重叠世代的动物中很难预测等位基因的保留,因此我们使用一种新的计算机模型来模拟稀有等位基因在3种物种中具有相反的生活历史特征的稀有等位基因的保留:北岛棕猕猴桃(Apteryx mantelli;一夫一妻制,活着),北岛知更鸟(Petroica longipes;一夫一妻制,短寿)和马鹿(鹿(Cervus elaphus);一夫多妻,寿命适中)。我们模拟了各种人口统计学场景下的封闭种群,并评估了实现10代后保留90%的选择性中性稀有等位基因(源种群中的频率= 0.05)所需的人工移民数量。达到遗传目标所需的每代移民数量在11到30之间,并且物种之间存在关键的异同。没有迁徙,没有一个物种达到遗传目标,由于多性雌雄的生殖偏斜,马鹿丧失了最丰富的等位基因多样性。但是,相对于其他物种,马鹿只需要适度的迁徙速度即可达到遗传目标,因为非领土育种者的周转率很高。相反,北岛的布朗猕猴桃需要最多的移民,因为当地生产的育种者寿命长,阻止了大批移民的招募。在所有物种中,所需的迁徙数量通常随携带能力,生存或生殖产量的增加而减少,并随着生殖成功个体差异的增加而增加,这表明准确量化这些参数以预测管理效果的重要性。总体而言,将稀有等位基因保留在一个小的孤立人群中需要大量的管理投入。使用模拟来探索针对相关人群优化的策略,将有助于最大程度地提高这项工作的价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号