首页> 外文期刊>Chemical Engineering Science >Simulation of the coking phenomenon in the superheater of a steam cracker
【24h】

Simulation of the coking phenomenon in the superheater of a steam cracker

机译:蒸汽裂解炉过热器结焦现象的模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Coke formation in the convection section of a steam cracker occurs when heavy feeds are cracked. This work presents CFD simulations of coke formation in the mixture superheater tubes in the convection section of a steam cracker. The hydrocarbon feed used for the simulations is a gas condensate. Eleven representative chemical species are selected, based on their boiling points, to mimic the entire range of feed components. The liquid–vapor spray flow in the mixture superheater tube is simulated based on an Eulerian–Lagrangian approach using ANSYS FLUENT 13.0. Evaporation of multicomponent droplets suspended in the vapor phase or deposited on a tube wall is considered. The mixture superheater tubes make three horizontal passes (11.3 m long and 0.077 m diameter) through the convection section. The droplet–wall interaction model considers 'Splash', 'Rebound induced breakup', 'Rebound' and 'Stick'. The amount of liquid deposited on the mixture superheater tube wall is obtained by simulating the spray flow. The amount of coke formed from the liquid deposited on a wall is based on the phase separation model of (Wiehe, 1993). Industrial & Engineering Chemistry Research 32, 2447–2454. Spatial variations of the coke layer formed in the mixture superheater tubes as a function of outer tube wall temperatures and initial droplet diameter are presented. For outer tube wall temperatures lower than the boiling point of the highest-boiling species in the feed a 1 mm thick coke layer is formed over a period of 1 month. For outer tube wall temperatures higher than the boiling point of the highest boiling component in the feed no coke is formed in the mixture superheater tubes. This work provides guidelines to minimize the extent of coke formation in the steam cracker convection section when a heavy feed is cracked. It also provides possible remedies to completely eliminate the coking problem when cracking heavy feeds.
机译:当重质进料裂化时,会在蒸汽裂化器的对流段中形成焦炭。这项工作提供了在蒸汽裂解器对流段的混合过热器管中焦炭形成的CFD模拟。用于模拟的烃进料为气体冷凝物。根据其沸点选择11种代表性化学物质,以模拟整个进料成分范围。使用ANSYS FLUENT 13.0,基于欧拉-拉格朗日方法,对混合物过热器管中的液体-蒸气喷雾流进行了模拟。考虑了悬浮在气相中或沉积在管壁上的多组分液滴的蒸发。混合过热器管通过对流段进行三个水平通道(长11.3 m,直径0.077 m)。液滴与壁的相互作用模型考虑了“飞溅”,“反弹引起的破裂”,“反弹”和“粘滞”。通过模拟喷雾流量获得沉积在混合物过热器管壁上的液体量。由沉积在壁上的液体形成的焦炭量基于(Wiehe,1993)的相分离模型。工业与工程化学研究32,2447–2454。提出了在混合物过热器管中形成的焦炭层的空间变化,其是外管壁温度和初始液滴直径的函数。如果外管壁温度低于进料中最高沸点物质的沸点,则在1个月的时间内会形成1毫米厚的焦炭层。对于外管壁温度高于进料中最高沸点组分的沸点的温度,在混合物过热器管中没有形成焦炭。这项工作提供了一些指导方针,以减少重质原料裂化时蒸汽裂化器对流段中焦炭形成的程度。它还提供了可能的补救措施,以完全消除重质饲料裂解时的焦化问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号