...
首页> 外文期刊>CERAMICS INTERNATIONAL >Recombination coefficient of atomic oxygen on ceramic materials in a CO2 plasma flow for the simulation of a Martian entry
【24h】

Recombination coefficient of atomic oxygen on ceramic materials in a CO2 plasma flow for the simulation of a Martian entry

机译:CO2等离子体流中陶瓷材料上原子氧的复合系数,用于模拟火星进入

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In order to design heat shields for space vehicles, materials must be characterized in simulation conditions close to those encountered in space environments. The most important conditions for simulating a Martian entry phase of space vehicles (high temperatures, low pressure CO2 plasma...) are achieved through the MESOX set-up associating a solar radiation concentrator and a microwave plasma generator. After the previous determination of the thermal flux of recombination transferred to the material (thermal approach, accommodation), a chemical approach was developed for evaluating the recombination coefficient of atomic oxygen and/or carbon monoxide by Optical Emission Spectroscopy. The gas temperature above the material, close to the surface where recombination occurs, was evaluated using the rotational temperature of a CO band in the Angstrom system. The recombination coefficients of atomic oxygen with O and/or CO on surface were determined in function of temperature-up to 2200 K according to the material resistance-for three sintered ceramic materials: SiC, Si3N4 and Al2O3 that can be used in space. An Arrhenius fit is obtained for each material leading to the activation energy of the atomic oxygen recombination reaction in CO2 plasma and these results are compared to the ones previously obtained in air plasma (Earth entry). (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
机译:为了设计用于航天器的隔热罩,必须在接近于太空环境的模拟条件下对材料进行表征。通过将太阳辐射集中器和微波等离子体发生器相关联的MESOX装置,可以实现模拟航天器火星进入阶段的最重要条件(高温,低压CO2等离子体...)。在预先确定了转移到材料上的重组热通量(热方法,调节)之后,开发了一种化学方法,用于通过光发射光谱法评估原子氧和/或一氧化碳的重组系数。使用Angstrom系统中CO波段的旋转温度评估了材料上方靠近发生重组的表面的气体温度。对于三种烧结陶瓷材料:SiC,Si3N4和Al2O3,可在空间中使用,根据材料的电阻,在高达2200 K的温度下,确定了表面上原子氧与O和/或CO的复合系数。对于每种材料,均获得了Arrhenius拟合,从而导致了CO2等离子体中原子氧重组反应的活化能,并将这些结果与之前在空气等离子体(地球进入)中获得的结果进行了比较。 (C)2015 Elsevier Ltd和Techna Group S.r.l.版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号