首页> 外文期刊>Biomaterials >Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip
【24h】

Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip

机译:生物打印3D微纤维支架,用于工程化内皮细胞和芯片上心脏

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Engineering cardiac tissues and organ models remains a great challenge due to the hierarchical structure of the native myocardium. The need of integrating blood vessels brings additional complexity, limiting the available approaches that are suitable to produce integrated cardiovascular organoids. In this work we propose a novel hybrid strategy based on 3D bioprinting, to fabricate endothelialized myocardium. Enabled by the use of our composite bioink, endothelial cells directly bioprinted within microfibrous hydrogel scaffolds gradually migrated towards the peripheries of the microfibers to form a layer of confluent endothelium. Together with controlled anisotropy, this 3D endothelial bed was then seeded with cardiomyocytes to generate aligned myocardium capable of spontaneous and synchronous contraction. We further embedded the organoids into a specially designed microfluidic perfusion bioreactor to complete the endothelialized-myocardium-on-a-chip platform for cardiovascular toxicity evaluation. Finally, we demonstrated that such a technique could be translated to human cardiomyocytes derived from induced pluripotent stem cells to construct endothelialized human myocardium. We believe that our method for generation of endothelialized organoids fabricated through an innovative 3D bioprinting technology may find widespread applications in regenerative medicine, drug screening, and potentially disease modeling. (C) 2016 Elsevier Ltd. All rights reserved.
机译:由于天然心肌的层次结构,工程心脏组织和器官模型仍然是一个巨大的挑战。整合血管的需求带来了额外的复杂性,限制了适用于产生整合心血管类器官的可用方法。在这项工作中,我们提出了一种基于3D生物打印的新型混合策略,以制造内皮化的心肌。通过使用我们的复合生物墨水,直接在微纤维水凝胶支架中进行生物打印的内皮细胞逐渐向微纤维的周围迁移,形成一层融合的内皮。然后将3D内皮床与受控的各向异性一起植入心肌细胞,以产生能够自发和同步收缩的对齐心肌。我们将类器官进一步嵌入到专门设计的微流灌注生物反应器中,以完成用于心血管毒性评估的内皮化单芯片心肌平台。最后,我们证明了这种技术可以转化为源自诱导多能干细胞的人心肌细胞,以构建内皮化的人心肌。我们相信,通过创新的3D生物打印技术制造的生成内皮化类器官的方法可能会在再生医学,药物筛选和潜在疾病建模中得到广泛应用。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号