...
首页> 外文期刊>Biomaterials >Matrix metalloproteinase-20 mediates dental enamel biomineralization by preventing protein occlusion inside apatite crystals
【24h】

Matrix metalloproteinase-20 mediates dental enamel biomineralization by preventing protein occlusion inside apatite crystals

机译:基质金属蛋白酶20通过防止磷灰石晶体内部的蛋白质阻塞来介导牙釉质生物矿化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Reconstruction of enamel-like materials is a central topic of research in dentistry and material sciences. The importance of precise proteolytic mechanisms in amelogenesis to form a hard tissue with more than 95% mineral content has already been reported. A mutation in the Matrix Metalloproteinase-20 (MMP-20) gene results in hypomineralized enamel that is thin, disorganized and breaks from the underlying dentin. We hypothesized that the absence of MMP-20 during amelogenesis results in the occlusion of amelogenin in the enamel hydroxyapatite crystals. We used spectroscopy and electron microscopy techniques to qualitatively and quantitatively analyze occluded proteins within the isolated enamel crystals from MMP-20 null and Wild type (WT) mice. Our results showed that the isolated enamel crystals of MMP-20 null mice had more organic macromolecules occluded inside them than enamel crystals from the WT. The crystal lattice arrangements of MMP-20 null enamel crystals analyzed by High Resolution Transmission Electron Microscopy (HRTEM) were found to be significantly different from those of the WT. Raman studies indicated that the crystallinity of the MMP-20 null enamel crystals was lower than that of the WT. In conclusion, we present a novel functional mechanism of MMP-20, specifically prevention of unwanted organic material entrapped in the forming enamel crystals, which occurs as the result of precise amelogenin cleavage. MMP-20 action guides the growth morphology of the forming hydroxyapatite crystals and enhances their crystallinity. Elucidating such molecular mechanisms can be applied in the design of novel biomaterials for future clinical applications in dental restoration or repair. (C) 2015 Elsevier Ltd. All rights reserved.
机译:牙釉质材料的重建是牙科和材料科学领域的研究重点。精确的蛋白水解机制在牙釉形成形成矿物质含量超过95%的硬组织中的重要性已得到报道。基质金属蛋白酶20(MMP-20)基因中的突变导致矿化度低的牙釉质变薄,组织混乱并从下面的牙本质断裂。我们假设在成釉过程中缺乏MMP-20会导致釉质羟基磷灰石晶体中成釉蛋白的闭塞。我们使用光谱学和电子显微镜技术定性和定量分析了MMP-20 null和Wild型(WT)小鼠分离的釉质晶体中的蛋白质。我们的结果表明,与野生型搪瓷晶体相比,MMP-20 null小鼠的分离的搪瓷晶体内部更多的有机大分子被闭塞。发现通过高分辨率透射电子显微镜(HRTEM)分析的MMP-20无效搪瓷晶体的晶格排列与WT显着不同。拉曼研究表明,MMP-20无效釉质晶体的结晶度低于WT的结晶度。总之,我们提出了MMP-20的一种新的功能机制,特别是防止了由于釉质原蛋白的精确切割而产生的搪瓷晶体中残留的有害有机物。 MMP-20的作用可指导形成的羟基磷灰石晶体的生长形态,并增强其结晶度。阐明这种分子机制可用于新型生物材料的设计,以用于将来在牙齿修复或修复中的临床应用。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号