首页> 外文期刊>Biomaterials >Recapitulation of in vivo-like paracrine signals of human mesenchymal stem cells for functional neuronal differentiation of human neural stem cells in a 3D microfluidic system
【24h】

Recapitulation of in vivo-like paracrine signals of human mesenchymal stem cells for functional neuronal differentiation of human neural stem cells in a 3D microfluidic system

机译:概述人间充质干细胞的体内样旁分泌信号在3D微流体系统中对人神经干细胞的功能性神经元分化

获取原文
获取原文并翻译 | 示例
           

摘要

Paracrine signals produced from stem cells influence tissue regeneration by inducing the differentiation of endogenous stem or progenitor cells. However, many recent studies that have investigated paracrine signaling of stem cells have relied on either two-dimensional transwell systems or conditioned medium culture, neither of which provide optimal culture microenvironments for elucidating the effects of paracrine signals in vivo. In this study, we recapitulated in vivo-like paracrine signaling of human mesenchymal stem cells (hMSCs) to enhance functional neuronal differentiation of human neural stem cells (hNSCs) in three-dimensional (3D) extracellular matrices (ECMs) within a microfluidic array platform. In order to amplify paracrine signaling, hMSCs were genetically engineered using cationic polymer nanoparticles to overexpress glial cell-derived neurotrophic factor (GDNF). hNSCs were cultured in 3D ECM hydrogel used to fill central channels of the microfluidic device, while GDNF-overexpressing hMSCs (GDNF-hMSCs) were cultured in channels located on both sides of the central channel. This setup allowed for mimicking of paracrine signaling between genetically engineered hMSCs and endogenous hNSCs in the brain. Co-culture of hNSCs with GDNF-hMSCs in the 3D microfluidic system yielded reduced glial differentiation of hNSCs while significantly enhancing differentiation into neuronal cells including dopaminergic neurons. Neuronal cells produced from hNSCs differentiating in the presence of GDNF-hMSCs exhibited functional neuron-like electrophysiological features. The enhanced paracrine ability of GDNF-hMSCs was finally confirmed using an animal model of hypoxic-ischemic brain injury. This study demonstrates the presented 3D microfluidic array device can provide an efficient co-culture platform and provide an environment for paracrine signals from transplanted stem cells to control endogenous neuronal behaviors in vivo. (C) 2015 Elsevier Ltd. All rights reserved.
机译:干细胞产生的旁分泌信号通过诱导内源性干细胞或祖细胞分化来影响组织再生。但是,许多最近的研究干细胞旁分泌信号的研究都依赖于二维transwell系统或条件培养基,这两种方法都无法提供最佳的培养微环境来阐明体内旁分泌信号的作用。在这项研究中,我们概述了人间充质干细胞(hMSCs)的体内类旁分泌信号传导,以增强微流控阵列平台内三维(3D)细胞外基质(ECM)中人神经干细胞(hNSCs)的功能性神经元分化。 。为了扩增旁分泌信号传导,使用阳离子聚合物纳米粒子对hMSC进行了基因工程改造,以过表达神经胶质细胞衍生的神经营养因子(GDNF)。将hNSC培养在3D ECM水凝胶中,以填充微流体装置的中央通道,同时将GDNF过表达的hMSC(GDNF-hMSC)培养在位于中央通道两侧的通道中。这种设置可以模拟大脑中基因改造的hMSC和内源性hNSC之间的旁分泌信号传导。在3D微流体系统中将hNSC与GDNF-hMSC共培养可降低hNSC的神经胶质分化,同时显着增强向神经元细胞(包括多巴胺能神经元)的分化。由hNSC产生的神经元细胞在GDNF-hMSC存在下分化,表现出功能性神经元样电生理特征。最终使用缺氧缺血性脑损伤的动物模型证实了GDNF-hMSCs的旁分泌能力增强。这项研究表明,提出的3D微流控阵列设备可以提供有效的共培养平台,并为来自移植的干细胞的旁分泌信号在体内控制内源性神经元行为提供环境。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号