...
首页> 外文期刊>Biomaterials >Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials.
【24h】

Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials.

机译:纳米晶磷灰石中OH的缺乏与原子序度的关系:对骨骼和生物材料的影响。

获取原文
获取原文并翻译 | 示例
           

摘要

Using laser Raman microprobe spectroscopy, we have characterized the degree of hydroxylation and the state of atomic order of several natural and synthetic calcium phosphate phases, including apatite of biological (human bone, heated human bone, mouse bone, human and boar dentin, and human and boar enamel), geological, and synthetic origin. Common belief holds that all the studied phases are hydroxylapatite, i.e., an OH-containing mineral with the composition Ca(10)(PO(4))(6)(OH)(2). We observe, however, that OH-incorporation into the apatite crystal lattice is reduced for nanocrystalline samples. Among the biological samples, no OH-band was detected in the Raman spectrum of bone (the most nanocrystalline biological apatite), whereas a weak OH-band occurs in dentin and a strong OH-band in tooth enamel. We agree with others, who used NMR, IR spectroscopy, and inelastic neutron scattering, that-contrary to the general medical nomenclature-bone apatite is not hydroxylated and therefore not hydroxylapatite. Crystallographically, this observation is unexpected; it therefore remains unclear what atom(s) occupy the OH-site and how charge balance is maintained within the crystal. For non-bone apatites that do show an OH-band in their Raman spectra, there is a strong correlation between the concentration of hydroxyl groups (based on the ratio of the areas of the 3572Deltacm(-1) OH-peak to the 960Deltacm(-1) P-O phosphate peak) and the crystallographic degree of atomic order (based on the relative width of the 960Deltacm(-1) P-O phosphate peak) of the samples. We hypothesize that the body biochemically imposes a specific state of atomic order and crystallinity (and, thus, concentration of hydroxyl) on its different apatite precipitates (bone, dentin, enamel) in order to enhance their ability to carry out tissue-specific functions.
机译:使用激光拉曼显微探针光谱,我们表征了几种天然和合成磷酸钙相的羟基化程度和原子序状态,包括生物(人骨,加热的人骨,小鼠骨骼,人和野猪牙本质以及人和野猪珐琅),地质和合成来源。普遍认为,所有研究的相都是羟基磷灰石,即组成为Ca(10)(PO(4))(6)(OH)(2)的含OH矿物。但是,我们观察到,对于纳米晶体样品,减少了磷灰石晶格中OH的掺入。在生物样品中,在骨骼的拉曼光谱中(最纳米晶的生物磷灰石)未检测到OH谱带,而在牙本质中出现了弱OH谱带,而在牙釉质中发现了强OH谱带。我们同意使用NMR,IR光谱和非弹性中子散射的其他观点,与一般医学术语-骨磷灰石相反的是,羟基磷灰石没有被羟基化,因此也没有羟基磷灰石。在晶体学上,这种观察是出乎意料的。因此,尚不清楚哪个原子占据OH-位以及如何在晶体内保持电荷平衡。对于在拉曼光谱中确实显示OH谱带的非骨磷灰石,羟基浓度之间存在很强的相关性(基于3572Deltacm(-1)OH峰与960Deltacm( -1)PO磷酸盐峰)和原子序的结晶度(基于960Deltacm(-1)PO磷酸盐峰的相对宽度)。我们假设人体通过生化手段在其不同的磷灰石沉淀物(骨,牙本质,牙釉质)上强加特定的原子序和结晶状态(因此,羟基的浓度),以增强其执行组织特定功能的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号