首页> 外文期刊>Biochemistry >Oxidative Damage in MauG: Implications for the Control of High- Valent Iron Species and Radical Propagation Pathways
【24h】

Oxidative Damage in MauG: Implications for the Control of High- Valent Iron Species and Radical Propagation Pathways

机译:MauG中的氧化损伤:对控制高价铁物种和自由基传播途径的启示

获取原文
获取原文并翻译 | 示例
           

摘要

The di-heme enzyme MauG catalyzes the oxidative biosynthesis of a tryptophan tryptophylquinone cofactor on a precursor of the enzyme methylamine dehydrogenase (preMADH). Reaction of H_2O_2 with the diferric form of MauG, or reaction of O_2 with diferrous MauG, forms the catalytic intermediate known as bis-Fe(IV), which acts as the key oxidant during turnover. The site of substrate oxidation is more than 40 ? from the high-spin heme iron where H_2O_2 initially reacts, and catalysis relies on radical hopping through an interfacial residue, Trp199 of MauG. In the absence of preMADH, the bis-Fe(IV) intermediate is remarkably stable, but repeated exposure to H_2O_2 results in suicide inactivation. Using mass spectrometry, we show that this process involves the oxidation of three Met residues (108, 114, and 116) near the high-spin heme through ancillary electron transfer pathways engaged in the absence of substrate. The mutation of a conserved Pro107 in the distal pocket of the high-spin heme results in a dramatic increase in the level of oxidation of these Met residues. These results illustrate structural mechanisms by which MauG controls reaction with its high-valent heme cofactor and limits uncontrolled oxidation of protein residues and loss of catalytic activity. The conservation of Met residues near the high-spin heme among MauG homologues from different organisms suggests that eventual deactivation of MauG may function in a biological context. That is, methionine oxidation may represent a protective mechanism that prevents the generation of reactive oxygen species by MauG in the absence of preMADH.
机译:双血红素酶MauG在甲胺脱氢酶(preMADH)的前体上催化色氨酸色氨酸提花醌辅因子的氧化生物合成。 H_2O_2与MauG的二铁反应或O_2与二铁MauG的反应形成了称为bis-Fe(IV)的催化中间体,它在转换过程中起关键氧化剂的作用。底物氧化部位大于40? H_2O_2最初在其中发生反应的高自旋血红素铁中起催化作用,而催化作用依赖于通过界面残基MauG的Trp199的自由基跳跃。在不存在preMADH的情况下,双-Fe(IV)中间体非常稳定,但是反复暴露于H_2O_2会导致自杀灭活。使用质谱法,我们显示该过程涉及通过辅助电子转移途径在不存在底物的情况下氧化高自旋血红素附近的三个Met残基(108、114和116)。高自旋血红素远端袋中保守Pro107的突变导致这些Met残基的氧化水平显着增加。这些结果说明了MauG通过其高价血红素辅因子控制反应并限制蛋白质残基不受控制的氧化和催化活性丧失的结构机理。来自不同生物体的MauG同源物中高旋转血红素附近的Met残基的保守性表明,MauG的最终失活可能在生物学环境中起作用。也就是说,蛋氨酸的氧化可以代表一种保护机制,可以防止在没有preMADH的情况下MauG产生活性氧。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号