...
首页> 外文期刊>Biochemistry >Mitochondrial ATP Synthase Catalytic Mechanism: A Novel Visual Comparative Structural Approach Emphasizes Pivotal Roles for Mg~(2+) and P-Loop Residues in Making ATP
【24h】

Mitochondrial ATP Synthase Catalytic Mechanism: A Novel Visual Comparative Structural Approach Emphasizes Pivotal Roles for Mg~(2+) and P-Loop Residues in Making ATP

机译:线粒体ATP合酶催化机制:一种新型的视觉比较结构方法强调Mg〜(2+)和P环残留物在制造ATP中的关键作用

获取原文
获取原文并翻译 | 示例
           

摘要

The mitochondrial ATP synthase (FoF_1) is one of the most abundant, important, and complex enzymes found in animals and humans. In earlier studies, we used the photosensitive phosphate analogue vanadate (V_i) to study the enzyme’s mechanism in the transition state. Significantly, these studies showed that Mg~(2+) plays an important role in transition state formation during ATP synthesis. Additionally, in both MgADP·V_i-F_1 and MgV_i-F_1 complexes, photoactivation of orthovanadate (V_i) induced cleavage at the third residue within the P-loop (GGAGVGKT), i.e., βA_158, suggesting its proximity to the γ-phosphate during transition state formation. However, despite our recent release of the F_1-ATPase structure containing V_i, the structural details regarding the role of Mg~(2+) have remained elusive. Therefore, in this study, we sought to improve our understanding of the essential role of Mg~(2+) during transition state formation. We utilized Protein Data Bank structural data representing different conformational intermediates of key steps in ATP synthesis to assemble a database of positional relationships between landmark residues of the catalytic site and the bound ligand. Applying novel bioinformatics methods, we combined the resulting interatomic spatial data with an animated model of the catalytic site to visualize the exact nature of the changes in these positional relationships during ATP synthesis. The results of these studies reported here show that the absence of Mg~(2+) results in migration of inorganic phosphate (P_i) from βA_158 to a more medial position in the P-loop binding pocket, thereby disrupting essential placement and orientation of the P_i needed to form the transition state structure and therefore MgATP.
机译:线粒体ATP合酶(FoF_1)是在动物和人类中发现的最丰富,最重要和最复杂的酶之一。在较早的研究中,我们使用光敏磷酸盐类似物钒酸盐(V_i)来研究过渡态酶的机理。有意义的是,这些研究表明,Mg〜(2+)在ATP合成过程中的过渡态形成中起着重要作用。另外,在MgADP·V_i-F_1和MgV_i-F_1复合物中,原钒酸盐(V_i)的光活化在P环(GGAGVGKT)的第三个残基(即βA_158)处引起裂解,这表明其在过渡过程中接近于γ-磷酸盐国家形成。然而,尽管我们最近发布了含有V_i的F_1-ATPase结构,但有关Mg〜(2+)作用的结构细节仍然难以捉摸。因此,在本研究中,我们试图增进我们对Mg〜(2+)在过渡态形成过程中的重要作用的了解。我们利用代表ATP合成关键步骤不同构象中间体的蛋白质数据库提供的结构数据,来组装催化位点和结合的配体之间的位置关系数据库。应用新颖的生物信息学方法,我们将所得的原子间空间数据与催化位点的动画模型结合在一起,以可视化ATP合成过程中这些位置关系变化的确切性质。这些研究的结果在此报告,结果表明,缺少Mg〜(2+)会导致无机磷酸盐(P_i)从βA_158迁移到P环结合口袋的更内侧位置,从而破坏其基本位置和方向。 P_i需要形成过渡态结构,因此需要MgATP。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号