首页> 外文期刊>Biochemistry >Optimal Salt Bridge for Trp-Cage Stabilization
【24h】

Optimal Salt Bridge for Trp-Cage Stabilization

机译:用于Trp保持架稳定的最佳盐桥

获取原文
获取原文并翻译 | 示例
           

摘要

Gai and co-workers [Bunagan, M. R., et al. (2006) J. Phys. Chem. B 110, 3759-3763] reported computational design studies suggesting that a D9E mutation would stabilize the Trp-cage. Experimental studies for this mutation were reported in 2008 [Hudaky, P., et al. (2008) Biochemistry 47, 1007-1016]; the authors suggested that [D9E]-TC5b presented a more compact and melting resistant structure because of the "optimal distance between the two sides of the molecule". Nonetheless, the authors reported essentially the same circular dichroism (CD) melting temperature, 38 +/- 0.3 degrees C, for TC5b and its [D9E] mutant. In this study, a more stable Trp-cage, DAYAQ WLKDG GPSSG RPPPS, was examined by nuclear magnetic resonance and CD with the following mutations: [D9E], [D9R,R16E], [R16O], [D9E,R16O], [R16K], and [D9E,R16K]. Of these, the [D9E] mutant displayed the smallest acidification-induced change in the apparent T-m. In analogy to the prior study, the CD melts of TC10b and its [D9E] mutant were, however, very similar; all of the other mutations were significantly fold destabilizing by all measures. A detailed analysis indicates that the original D9-R16 salt bridge is optimal with regard to fold cooperativity and fold stabilization. Evidence of salt bridge formation is also provided for a swapped pair, the [D9R,R16E] mutant. Model systems reveal that an ionized aspartate at the C-terminus of a helix significantly decreases intrinsic helicity, a requirement for Trp-cage fold stability. The CD evidence that was cited as supporting increased fold stability for [D9E]-TC5b at higher temperatures appears to be a reflection of increased helix stability in both the folded and unfolded states rather than a more favorable salt bridge. Our study also provides evidence of other Trp-cage stabilizing roles of the R16 side chain.
机译:盖和同事[Bunagan,M. R.,et al。 (2006)J.Phys。化学B 110,3759-3763]报告了计算设计研究,表明D9E突变将稳定Trp笼。 2008年报道了对该突变的实验研究[Hudaky,P.等。 (2008)Biochemistry 47,1007-1016];作者认为,由于“分子两侧之间的最佳距离”,[D9E] -TC5b具有更紧凑和抗熔化的结构。尽管如此,作者报告的TC5b及其[D9E]突变体的圆二色性(CD)熔化温度基本相同,为38 +/- 0.3摄氏度。在这项研究中,通过核磁共振和具有以下突变的CD检查了更稳定的Trp笼DAYAQ WLKDG GPSSG RPPPS:[D9E],[D9R,R16E],[R16O],[D9E,R16O],[ R16K]和[D9E,R16K]。其中,[D9E]突变体表现出最小的酸化诱导的表观T-m变化。与先前的研究类似,TC10b及其[D9E]突变体的CD熔体非常相似。所有其他突变均通过所有方法显着倍数失稳。详细的分析表明,原始的D9-R16盐桥在折叠合作性和折叠稳定性方面是最佳的。还提供了交换对[D9R,R16E]突变体形成盐桥的证据。模型系统显示,在螺旋C末端的离子化天冬氨酸会显着降低固有螺旋度,这是Trp笼折叠稳定性的要求。被引用为支持[D9E] -TC5b在较高温度下增加的折叠稳定性的CD证据似乎反映了在折叠和未折叠状态下螺旋稳定性增加,而不是更有利的盐桥。我们的研究还提供了R16侧链的其他Trp笼稳定作用的证据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号