...
首页> 外文期刊>Biochemistry >Probing the Structural and Energetic Basis of Kinesin–Microtubule Binding Using Computational Alanine-Scanning Mutagenesis
【24h】

Probing the Structural and Energetic Basis of Kinesin–Microtubule Binding Using Computational Alanine-Scanning Mutagenesis

机译:用计算丙氨酸扫描诱变探究驱动蛋白-微管结合的结构和能量基础

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Kinesin-microtubule (MT) binding plays a critical role in facilitating and regulating the motor function of kinesins. To obtain a detailed structural and energetic picture of kinesin-MT binding, we performed large-scale computational alanine-scanning mutagenesis based on long-time molecular dynamics (MD) simulations of the kinesin-MT complex in both ADP and ATP states. First, we built three all-atom kinesin-MT models: human conventional kinesin bound to ADP and mouse KIF1A bound to ADP and ATP. Then, we performed 30 ns MD simulations followed by kinesin-MT binding free energy calculations for both the wild type and mutants obtained after substitution of each charged residue of kinesin with alanine. We found that the kinesin-MT binding free energy is dominated by van der Waals interactions and further enhanced by electrostatic interactions. The calculated mutational changes in kinesin-MT binding free energy are in excellent agreement with results of an experimental alanine-scanning study with a root-mean-square error of -0.32 kcal/mol [Woehlke, G., et al. (1997) Cell 90, 207-216]. We identified a set of important charged residues involved in the tuning of kinesin-MT binding, which are clustered on several secondary structural elements of kinesin (including well-studied loops L7, L8, L11, and L12, helices a4, a5, and a6, and less-explored loop L2). In particular, we found several key residues that make different contributions to kinesin-MT binding in ADP and ATP states. The mutations of these residues are predicted to fine-tune the motility of kinesin by modulating the conformational transition between the ADP state and the ATP state of kinesin.
机译:驱动蛋白-微管(MT)结合在促进和调节驱动蛋白的运动功能中起关键作用。为了获得驱动蛋白-MT结合的详细结构和能量图,我们基于驱动蛋白-MT复合物在ADP和ATP状态下的长期分子动力学(MD)模拟,进行了大规模的计算丙氨酸扫描诱变。首先,我们建立了三种全原子驱动蛋白MT模型:与ADP结合的人类常规驱动蛋白和与ADP和ATP结合的小鼠KIF1A。然后,我们进行了30 ns的MD模拟,随后对驱动蛋白的每个带电荷残基用丙氨酸取代后的野生型和突变体进行了驱动蛋白MT结合自由能计算。我们发现驱动蛋白-MT结合自由能由范德华相互作用所主导,并通过静电相互作用进一步增强。计算的驱动蛋白-MT结合自由能的突变变化与实验性丙氨酸扫描研究的结果非常吻合,均方根误差为-0.32 kcal / mol [Woehlke,G.等。 (1997)Cell 90,207-216]。我们确定了一组涉及驱动蛋白-MT结合的重要带电残基,这些残基聚集在驱动蛋白的几个二级结构要素上(包括经过充分研究的环L7,L8,L11和L12,螺旋a4,a5和a6 ,以及探索较少的循环L2)。特别是,我们发现了几个关键残基,它们在ADP和ATP状态下对驱动蛋白-MT的结合产生不同的贡献。预测这些残基的突变可通过调节驱动蛋白ADP状态和ATP状态之间的构象转变来微调驱动蛋白的运动性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号