...
首页> 外文期刊>Biochemistry >Long-Range Electron Transfer Reactions between Hemes of MauG and Different Forms of Tryptophan Tryptophylquinone of Methylamine Dehydrogenase
【24h】

Long-Range Electron Transfer Reactions between Hemes of MauG and Different Forms of Tryptophan Tryptophylquinone of Methylamine Dehydrogenase

机译:MauG血红素与甲胺脱氢酶色氨酸色氨酸提花醌不同形式之间的远程电子转移反应

获取原文
获取原文并翻译 | 示例

摘要

The diheme enzymeMauG catalyzes the post-translational modification of a precursor protein of methylamine dehydrogenase (preMADH) to complete the biosynthesis of its protein-derived tryptophan tryptophylquinone (TTQ) cofactor. This six-electron oxidation of preMADH requires long-range electron transfer (ET) as the structure of the MauG-preMADH complex reveals that the shortest distance between the modified residues of preMADH and the nearest heme of MauG is 14.0A ° [Jensen, L. M. R., Sanishvili, R., Davidson, V. L., and Wilmot, C. M. (2010) Science 327, 1392-1394]. The kinetics of two ET reactions betweenMADH and MauG have been analyzed. Interprotein ET from quinolMADHto the high-valent bis- Fe(IV) form of MauG exhibits a Kd of 11.2 μM and a rate constant of 20 s-1. ET from diferrous MauG to oxidized TTQ ofMADH exhibits a Kd of 10.1 μMand a rate constant of 0.07 s-1. These similar Kd values are much greater than that for the MauG-preMADHcomplex, indicating that the extent of TTQ maturity rather than its redox state influences complex formation. The difference in rate constants is consistent with a larger driving force for the faster reaction. Analysis of the structure of the MauG-preMADH complex in the context of ET theory and these results suggests that direct electron tunneling between the residues that form TTQ and the five-coordinate oxygen-binding heme is not possible, and that ET requires electron hopping via the six-coordinate heme.
机译:双血红素酶MauG催化甲胺脱氢酶(preMADH)的前体蛋白的翻译后修饰,以完成其蛋白衍生的色氨酸色氨酸醌(TTQ)辅因子的生物合成。 preMADH的六电子氧化需要远程电子转移(ET),因为MauG-preMADH配合物的结构表明,preMADH修饰残基与最近的MauG血红素之间的最短距离为14.0A°[Jensen,LMR ,Sanishvili,R.,Davidson,VL和Wilmot,CM(2010)Science 327,1392-1394]。分析了MADH和MauG之间两个ET反应的动力学。从喹啉MADH到MauG的高价双Fe(IV)形式的蛋白间ET的Kd为11.2μM,速率常数为20 s-1。从二亚乙基MauG到MADH的氧化TTQ的ET的Kd为10.1μM,速率常数为0.07 s-1。这些相似的Kd值比MauG-preMADH复合物的Kd值大得多,表明TTQ成熟的程度而不是其氧化还原状态会影响复合物的形成。速率常数的差异与较大的驱动力相一致,以加快反应速度。在ET理论的背景下分析MauG-preMADH配合物的结构,这些结果表明,在形成TTQ的残基和五配位氧结合血红素之间不可能进行直接电子隧穿,并且ET需要通过六坐标血红素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号