首页> 外文学位 >Biosynthesis of the tryptophan tryptophylquinone cofactor of methylamine dehydrogenase in vitro.
【24h】

Biosynthesis of the tryptophan tryptophylquinone cofactor of methylamine dehydrogenase in vitro.

机译:甲胺脱氢酶的色氨酸色氨酸提花醌辅因子的生物合成。

获取原文
获取原文并翻译 | 示例

摘要

Tryptophan tryptophylquinone (TTQ), the prosthetic group of methylamine dehydrogenase (MADH), is formed by post-translational modifications of two tryptophan residues that result in the incorporation of two oxygens into one tryptophan side chain and the covalent cross-linking of that side chain to a second tryptophan residue. MauG is a novel 42 kDa di-heme protein with low- and high-spin c-type hemes, which is required for the incorporation of the second oxygen and the cross-linking of the TTQ biosynthesis. The visible absorption and resonance Raman spectroscopic properties of each of the two c-type hemes, and the overall redox properties of MauG reveal that the two hemes with distinct spectral properties have similar intrinsic Em values but exhibit negative redox cooperativity. An experimental system has been developed that allows the direct continuous monitoring of MauG-dependent TTQ biosynthesis in vitro. Four diverse electron donors were shown to provide reducing equivalents for MauG-dependent TTQ biosynthesis under aerobic conditions. Peroxides and idosobenzenes could serve as alternative oxygen donors for MauG-dependent TTQ biosynthesis. During the reaction with H2O2, a discrete reaction intermediate was observed, which is likely the reduced quinol form of TTQ that is then oxidized to the quinone. The implications of these results in elucidating the mechanism of MauG-dependent TTQ biosynthesis are discussed.; Electron paramagnetic resonance (EPR) and visible absorption spectroscopy were used to identify intermediates in the MauG-dependent reactions. Addition of H2O2 to oxidized MauG results in a high-valent oxoferryl intermediate with the second oxidation equivalent located on the other heme iron (FeIV=O, FeIV). When the biological substrate of MauG, a biosynthetic precursor of MADH, is mixed with the high-valent oxoferryl intermediate a substrate-based radical intermediate is trapped. High-resolution size-exclusion chromatography shows that MauG can form a stable complex with the biosynthetic precursor of MADH and the high-valent intermediate, but not mature MADH. The maximum stoichiometry of binding of MauG to the precursor is 1:1. These findings reveal that significant conformational changes in one or both of the proteins occur during catalysis which significantly affects the protein-protein interactions. On the basis of these results, a mechanism of oxygen activation by MauG and a radical mechanism for MauG-dependent TTQ biosynthesis were proposed.
机译:色氨酸色氨酸提花醌(TTQ)是甲胺脱氢酶(MADH)的辅基,由两个色氨酸残基的翻译后修饰形成,导致两个氧掺入一个色氨酸侧链中,并且该侧链共价交联第二个色氨酸残基。 MauG是具有低和高旋转c型血红素的新型42 kDa二血红素蛋白,这是引入第二个氧和TTQ生物合成的交联所必需的。两个c型血红素各自的可见吸收和共振拉曼光谱性质以及MauG的总体氧化还原性质表明,具有不同光谱性质的两个血红素具有相似的固有Em值,但显示出负的氧化还原协同性。已经开发了一种实验系统,该系统可以在体外直接连续监测MauG依赖的TTQ生物合成。显示了四个不同的电子供体在有氧条件下为依赖MauG的TTQ生物合成提供了还原当量。过氧化物和偶氮苯可作为依赖MauG的TTQ生物合成的替代供氧体。在与H2O2的反应过程中,观察到离散的反应中间体,这很可能是TTQ的还原喹啉形式,然后被氧化成醌。讨论了这些结果对阐明MauG依赖性TTQ生物合成机制的意义。电子顺磁共振(EPR)和可见吸收光谱用于鉴定MauG依赖性反应中的中间体。向氧化的MauG中加入H2O2会生成高价的草酰氧中间体,其第二个氧化当量位于另一个血红素铁上(FeIV = O,FeIV)。当MAau的生物合成前体MauG的生物底物与高价草酰氧中间体混合时,会捕获基于底物的自由基中间体。高分辨率尺寸排阻色谱表明,MauG可以与MADH的生物合成前体和高价中间体(而不是成熟的MADH)形成稳定的复合物。 MauG与前体结合的最大化学计量比为1:1。这些发现表明,在催化过程中,一种或两种蛋白质发生了显着的构象变化,这显着影响了蛋白质与蛋白质的相互作用。基于这些结果,提出了MauG激活氧的机理和依赖MauG的TTQ生物合成的自由基机理。

著录项

  • 作者

    Li, Xianghui.;

  • 作者单位

    The University of Mississippi Medical Center.;

  • 授予单位 The University of Mississippi Medical Center.;
  • 学科 Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

  • 入库时间 2022-08-17 11:39:06

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号