...
首页> 外文期刊>Biochemistry >Temperature Range of Thermodynaic Stability for the Native State of Reversible Two-Stae Proteins
【24h】

Temperature Range of Thermodynaic Stability for the Native State of Reversible Two-Stae Proteins

机译:可逆两阶段蛋白质天然状态的热力学稳定性的温度范围

获取原文
获取原文并翻译 | 示例
           

摘要

The difference between the heat (T_G) and the cold (T_G') denaturation temperatures defines the temperature range (T_(Range)) over which the native state of a reversible two-state protein is thermodynamically stable. We have performed a correlation analysis for thermodynamic parameters in a selected data set of structurally nonhomologous single-domain reversible two-state proteins. We find that the temperature range is negatively correlated with the protein size and with the heat capacity change (DELTAC_p) but is positively correlated with the maximal protein stability [DELTAG(T_S)]. The correlation between the temperature range and maximal protein stability becomes highly significant upon normalization of the maximal protein stability with protein size. The melting temperature (T_G) also shows a negative correlation with protein size. Consistently, T_G and T_G' show opposite correlations with DELTAC_p, indicating a dependence of the T_(Range) on the curvature of the protein stability curve. Substitution of proteins in our data set with their homologues and arbitrary addition or removal of a protein in the data set do not affect the outcome of our analysis. Simulations of the thermodynamic data further indicate that T_(Range) is more sensitive to variations in curvature than to the slope of the protein stability curve. The hydrophobic effect in single domains is the principal reason for these observations. Our results imply that larger proteins may be stable over narrower temperature ranges and that smaller proteins may have higher melting temperatures, suggesting why protein structures often differentiate into multiple substructures with different hydrophobic cores. Our results have interesting implications for protein thermostability.
机译:热(T_G)和冷(T_G')变性温度之间的差异定义了温度范围(T_(Range)),在该温度范围内,可逆两态蛋白质的天然状态是热力学稳定的。我们对结构非同源单域可逆两态蛋白质的选定数据集中的热力学参数进行了相关分析。我们发现温度范围与蛋白质大小和热容变化(DELTAC_p)呈负相关,但与最大蛋白质稳定性[DELTAG(T_S)]正相关。当最大蛋白质稳定性随蛋白质大小归一化时,温度范围与最大蛋白质稳定性之间的相关性变得非常重要。熔解温度(T_G)也与蛋白质大小呈负相关。一致地,T_G和T_G'与DELTAC_p显示相反的相关性,表明T_(Range)对蛋白质稳定性曲线曲率的依赖性。用我们的同源物替换数据集中的蛋白质以及任意添加或删除数据集中的蛋白质均不会影响我们的分析结果。热力学数据的模拟进一步表明,T_(Range)对曲率变化比对蛋白质稳定性曲线的斜率更敏感。单域的疏水作用是这些观察的主要原因。我们的结果表明,较大的蛋白质可能在较窄的温​​度范围内稳定,较小的蛋白质可能具有较高的解链温度,这表明为什么蛋白质结构经常分化为具有不同疏水核心的多个亚结构。我们的结果对蛋白质的热稳定性具有有趣的意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号