首页> 外文期刊>Combustion theory and modelling >An enthalpy-temperature hybrid method for solving phase-change problems and its application to polymer pyrolysis and ignition
【24h】

An enthalpy-temperature hybrid method for solving phase-change problems and its application to polymer pyrolysis and ignition

机译:焓-温混合法求解相变问题及其在聚合物热解和着火中的应用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A numerical approach based on the enthalpy method is proposed for solving generalized phase-change problems. The method is applied to predict pyrolysis and ignition of polymeric combustible materials. In contrast to the traditional approach, here both enthalpy and temperature are treated as independent variables, and the conservation equations are solved simultaneously in conjunction with the constitutive equations. Also, the formulation of the formulation of the constitutive equations for the phase change is not necessarily the dame for all of the possible phases, but can be chosen independently according to the characteristics of the physical problem and the requirements of the numerical analysis of each respective phase. Thus with this new approach, which we refer to as the enthalpy-temperature hybrid method, the enthalpy method is applicable to the generalized phase-change problems regardless of the form of the constitutive equations. The proposed method is first applied to a one-dimensional classical freezing problem for verification. It is found that the numerical results for the temperature history and the position of the phase-change interface agree well with the analytic solution existing in the literature. The method is then applied to the numerical simulation of the pyrolysis and ignition of a composite material with a polymer as the matrix and fibreglass as the filling material. Three models of oxygen distribution in the molten layer are considered to explore the melting and oxygen effects on the polymer pyrolysis. Numerical calculation shows that high oxygen concentrations in the molten layer enhance the pyrolysis reaction, resulting in a larger amount of pyrolysate, but in lower surface temperatures of the sample. It also shows that the distribution of oxygen in the molten layer has a strong effect on the pyrolysate rate, and therefore on ignition and combustion of the polymers. Comparison with available experimental data indicates that a model of oxygen distribution in the molten layer that is limited to a thin layer near the surface best describes the ignition process for a homogeneously blended polypropylene/fibreglass composite.
机译:提出了一种基于焓的数值方法来求解广义相变问题。该方法用于预测聚合物可燃材料的热解和着火。与传统方法相反,此处将焓和温度均视为自变量,并且将守恒方程与本构方程同时求解。而且,用于相变的本构方程的公式的公式不一定对所有可能的相位都是功劳,而是可以根据物理问题的特征和各个数值分析的要求独立选择。相。因此,通过这种新方法,我们将其称为焓-温度混合方法,无论本构方程的形式如何,焓方法都适用于广义相变问题。首先将该方法应用于一维经典冻结问题进行验证。结果表明,温度历程和相变界面位置的数值结果与文献中存在的解析解吻合良好。然后将该方法应用于以聚合物为基质,玻璃纤维为填充材料的复合材料的热解和燃烧的数值模拟。考虑了熔融层中氧分布的三种模型,以探讨熔融和氧对聚合物热解的影响。数值计算表明,熔融层中的高氧气浓度可增强热解反应,从而导致产生大量的热解产物,但样品的表面温度较低。还表明,氧在熔融层中的分布对热解速率具有强烈影响,因此对聚合物的着火和燃烧具有强烈的影响。与现有实验数据的比较表明,仅限于表面附近的薄层的熔融层中的氧分布模型最能描述均匀混合的聚丙烯/玻璃纤维复合材料的着火过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号