...
首页> 外文期刊>Basin research >Salt tectonics driven by differential sediment loading: stability analysis and finite-element experiments
【24h】

Salt tectonics driven by differential sediment loading: stability analysis and finite-element experiments

机译:含沙量差异驱动的盐构造:稳定性分析和有限元实验

获取原文
获取原文并翻译 | 示例
           

摘要

At many continental margins, differential sediment loading on an underlying salt layer drives salt deformation and has a significant impact on the structural evolution of the basin. We use 2-D finite-element modelling to investigate systems in which a linear viscous salt layer underlies a frictional-plastic overburden of laterally varying thickness. In these systems, differential pressure induces the flow of viscous salt, and the overburden experiences updip deviatoric tension and downdip compression. A thin-sheet analytical stability criterion for the system is derived and is used to predict conditions under which the sedimentary overburden will be unstable and fail, and to estimate the initial velocities of the system. The analytical predictions are in acceptable agreement with initial velocity patterns of the numerical models. In addition to initial stability analyses, the numerical model is used to investigate the subsequent finite deformation. As the systems evolve, overburden extension and salt diapirism occur in the landward section and contractional structures develop in the seaward section. The system evolution depends on the relative widths of the salt basin and the length scale of the overburden thickness variation. In narrow salt basins, overburden deformation is localised and characterised by high strain rates, which cause the system to reach a gravitational equilibrium and salt movement to cease earlier than for wide salt basins. Sedimentation enhances salt evacuation by maintaining a differential pressure in the salt. Continued sedimentary filling of landward extensional basins suppresses landward salt diapirism. Sediment progradation leads to seaward propagation of the landward extensional structures and depocentres. At slow sediment progradation rates, the viscous flow can be faster than the sediment progradation, leading to efficient salt evacuation and salt weld formation beneath the landward section. Fast sediment progradation suppresses the viscous flow, leaving salt pillows beneath the prograding wedge.
机译:在许多大陆边缘,下层盐层上不同的沉积物负荷会导致盐变形,并对盆地的结构演化产生重大影响。我们使用二维有限元建模来研究线性粘性盐层位于横向变化厚度的摩擦塑性覆盖层之下的系统。在这些系统中,压差引起粘性盐的流动,并且上覆层经历偏倾张力的上倾和下倾压缩。得出了该系统的薄层分析稳定性判据,该判据可用于预测沉积物覆盖层不稳定和破裂的条件,并估算系统的初始速度。分析预测与数值模型的初始速度模式是可以接受的。除了初始稳定性分析之外,还使用数值模型来研究随后的有限变形。随着系统的发展,上岸部分发生上覆扩展和盐成岩作用,而下海部分则出现收缩结构。系统的演化取决于盐盆的相对宽度和覆盖层厚度变化的长度尺度。在狭窄的盐盆地中,上覆地层变形是局部的,其特征在于应变率高,这导致该系统达到重力平衡,并且盐运动比宽盐盆地要早地停止。沉积物通过维持盐分中的压差来增强盐分排出。向陆延伸盆地的持续沉积充填抑制了陆向盐成岩作用。泥沙淤积导致陆上伸展构造和沉积中心向海传播。在较慢的沉积物扩散速度下,粘性流的速度可能比沉积物的扩散速度快,从而导致有效的盐分排出和陆段下方的盐焊缝形成。快速的沉淀物沉淀抑制了粘性流,使盐枕位于沉淀楔下面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号