首页> 外文期刊>材料試験技術 >Indentation theory and experiments of the truncated conical indenter (1st. extended indentation theory based on the ball indentation theory and experiments by the instrumented rockwell hardness tester)
【24h】

Indentation theory and experiments of the truncated conical indenter (1st. extended indentation theory based on the ball indentation theory and experiments by the instrumented rockwell hardness tester)

机译:截头圆锥压头的压痕理论和实验(基于球压痕理论和仪器洛氏硬度计的实验的第一扩展压痕理论)

获取原文
获取原文并翻译 | 示例
           

摘要

Rockwell Hardness test is simple and quick for evaluating mechanical properties of the industrial materials. Up to now, we have been proposed the evaluation method of material properties by the ball indentation theory and also the pyramidal indentation theory. In this paper, the ball indentation theory proposed by authors is extended and applied to the indentation of the truncated conical indenter. As a result, theoretical equation of the truncated conical indenter is deduced as follows: E{sub}(s(c))=(1-μ{sup}2)/[4/3{the square root of}π k{sub}(0(Con))/L{sub}M (δ{sub}t-c·L{sub}m-T{sub}(Con)(δ{sub}r-C·L{sub}m - I(E)] where K{sub}(0(con))= {the square root of}π·tan(β{sub}(Con)/2),β{sub}(Con): apex angle, L{sub}M load δ{sub}t,δr: measured indentation and elastic recovery displacements respectively, C: spring constant of the tester, C·LM: elastic deformation of the tester, T{sub}(Con): truncation of the indenter's round tip, E{sub}I, E{sub}s and μ{sub}I, μ{sub}S Young's moduli and Poisson's ratios of the indenter and the specimen, F(E){sub}(IS) ={(1-μ{sub}I{sup}2)/E{sub}I+(1-μ{sub}s{sup}2)} elastic parameter of the indenter and the specimen. Indentation experiments are carried out for the following specimens: Carbon steel (HV 500, HRC 60, HR 30 N 60) and Cu-Zn alloy (HRB 72): over the load ranging from 144 N to 441 N. Then, implementation processes of the theory are described in detail for the specimen HV 500 considered as the calibration specimen. so that the spring constant of the tester C and the truncation of the conical indenter T{sub}(Con) are obtained. Using theses values of C and T{sub}(Con), Young's moduli E{sub}(S(C)) for the arbitrary specimens are calculated with the deduced theoretical equation. These values of E{sub}S(C) and supposed values E5 show reasonably good agreement. When the load L{sub}M is 147 N. indentation depths of experimental value of Carbon steels (HV 500, HRC 60, HR 30 N 60) are smaller than the height of the indenter's tip ball part, so that this deduced theoretical equation will also be applied to the indentation of the indenter's spherical tip part. Namely, this deduced theoretical equation will be useful for wide range of load.
机译:洛氏硬度测试可轻松快速地评估工业材料的机械性能。到目前为止,我们已经提出了利用球压痕理论以及金字塔压痕理论对材料性能进行评估的方法。在本文中,作者提出的球压痕理论被扩展并应用于截头圆锥形压头的压痕。结果,截头圆锥形压头的理论方程推导如下:E {sub}(s(c))=(1-μ{sup} 2)/ [4/3 {}πk {的平方根} sub}(0(Con))/ L {sub} M(δ{sub} tc·L {sub} mT {sub}(Con)(δ{sub} rC·L {sub} m-I(E)]其中K {sub}(0(con))= {}π·tan(β{sub}(Con)/ 2)的平方根,β{sub}(Con):顶角,L {sub} M载荷δ{sub} t,δr:分别是测得的压痕和弹性回复位移,C:测试仪的弹簧常数,C·LM:测试仪的弹性变形,T {sub}(Con):压头的圆头截短,E {sub} I,E {sub} s和μ{sub} I,μ{sub} S压头和试样的杨氏模量和泊松比F(E){sub}(IS)= {(1-μ压头和试样的{sub} I {sup} 2)/ E {sub} I +(1-μ{sub} s {sup} 2)}弹性参数对下列试样进行压痕实验:碳钢(HV 500,HRC 60,HR 30 N 60)和Cu-Zn合金(HRB 72):在144 N至441 N的负载范围内。然后,在deta中介绍该理论的实现过程对于被视为校准样本的HV 500样本,不适用。从而获得测试仪C的弹簧常数和圆锥形压头T {sub}(Con)的截断。使用这些C和T {sub}(Con)值,利用推导的理论方程计算任意样本的杨氏模量E {sub}(S(C))。 E {sub} S(C)的这些值和假定值E5表现出相当好的一致性。当载荷L {sub} M为147 N时。碳素钢(HV 500,HRC 60,HR 30 N 60)的实验值压入深度小于压头尖端球部的高度,因此可以推导出理论公式也将应用于压头的球形尖端部分的压痕。即,该推导的理论方程对于宽范围的载荷将是有用的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号