...
首页> 外文期刊>表面科学 >Electron- and Hole-transfer from TiO_2 Particles to Adsorbates Studied by Time-Resolved Infrared Absorption Spectroscopy
【24h】

Electron- and Hole-transfer from TiO_2 Particles to Adsorbates Studied by Time-Resolved Infrared Absorption Spectroscopy

机译:时间分辨红外吸收光谱法研究TiO_2颗粒向吸附剂的电子和空穴转移

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Behavior of the electrons and holes photogenerated in TiO_2 particles was observed by lime-resolved infrared absorption spectroscopy in the presence of oxygen, water, and methanol vapor. The electrons photogenerated by a band-gap excitation displayed a structureless, broad absorption of IR light from 3000 to 900 cm(-1), which was assigned to the intra-conduction-band transition and/or excitation from mid-gap traps to the conduction band. This electron-induced absorption was probed as a function of time delay after the photoexcitation. Electron decay caused by the recombination with holes and by the charge-transfer reactions with adsorbates were kinetically analyzed. The electron decay was accelerated in the presence of oxygen gas due to an electron-capture reaction at the interface, whereas was decelerated in methanol vapor due to an effective hole-capture by methoxy groups. On platinized TiO_2 particles exposed to water vapor, a hole-capture reaction completed within 2 mu s after band-gap excitation, whereas the electron-capture reaction occurred in 10 mu s or later. These results demonstrate the effectiveness of this method to identify individual steps of photo-induced reactions at interfaces.
机译:在氧气,水和甲醇蒸气存在下,通过石灰解析红外吸收光谱法观察了在TiO_2颗粒中光生电子和空穴的行为。带隙激发光生电子显示3000至900 cm(-1)的IR光无结构,广泛吸收,这归因于导带内跃迁和/或从中间能隙陷阱到电子的激发。导带。在光激发之后,探测该电子诱导的吸收与时间延迟的关系。动力学分析了由与空穴的重组以及与吸附物的电荷转移反应引起的电子衰减。由于界面处的电子捕获反应,在氧气存在下,电子衰减加速,而由于甲氧基进行的有效空穴捕获,在甲醇蒸气中电子衰减衰减。在暴露于水蒸气的镀铂TiO_2粒子上,带隙激发后2 s内完成了空穴捕获反应,而电子捕获反应在10 s或更晚的时间内发生。这些结果证明了该方法识别界面上光诱导反应的各个步骤的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号