首页> 外文期刊>Computers & Fluids >Applications of dynamic hybrid grid method for three-dimensional moving/deforming boundary problems
【24h】

Applications of dynamic hybrid grid method for three-dimensional moving/deforming boundary problems

机译:动态混合网格法在三维运动/变形边界问题中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

In the previous work, the authors had developed a dynamic hybrid grid generation method and an unsteady flow solver for two-dimensional incompressible and compressible unsteady flows with moving or morphing boundary. In this paper, the dynamic hybrid grid generation method and the unsteady flow solver are extended to three-dimensional complex geometries with moving and/or deforming boundaries, and coupled with force and moment calculation, and the integration of the rigid body, six degrees-of-freedom (6DOF) equations of motion. In order to enhance the flexibility and efficiency of moving grid generation, the dynamic hybrid grid method combines the 'Delaunay graph' mapping approach, node relaxation based on 'spring' analogy and local re-meshing strategy. Firstly, the prism/tetrahedral/Cartesian hybrid grids are adopted to discrete the initial computational domain over complex configurations. Once the bodies move or deform, the grid points in the boundary layer of the moving/morphing bodies are moved firstly with a modified advancing-layer method, the grid points in the outer far-field keep stationary, while the grid points between the last layer of body-fitted grids and the internal boundary of the specified far-field are mapped by the 'Delaunay graph' mapping method. But the background grids (the Delaunay graph) themselves are deformed by the simple node relaxation based on 'spring' analogy to improve the efficiency. Then the quality of the deformed grids is checked with some criteria. If the deformed grids do not pass the checking step, a local re-meshing procedure is carried out. Based on the dynamic hybrid grids, a parallel implicit finite-volume flow solver for 3D unsteady Navier-Stokes equations is developed also. In order to deal with the problems of multi-body separation, the integration of the rigid body, 6DOF equations of motion is coupled in the same framework of the flow solver. The applications for complex 3D morphing configurations demonstrate the robustness and efficiency of present method.
机译:在先前的工作中,作者开发了一种动态混合网格生成方法和一种非定常流动求解器,用于求解带有运动或变形边界的二维不可压缩和可压缩的非定常流动。本文将动态混合网格生成方法和非定常流动求解器扩展到具有移动和/或变形边界的三维复杂几何形状,并结合力和力矩计算以及刚体,六度的积分。自由(6DOF)运动方程。为了提高移动网格生成的灵活性和效率,动态混合网格方法结合了“ Delaunay图”映射方法,基于“弹簧”类比的节点松弛和局部重新网格化策略。首先,采用棱镜/四面体/笛卡尔混合网格在复杂配置上离散初始计算域。一旦物体移动或变形,移动/变形物体的边界层中的网格点首先使用改进的前进层方法移动,外部远场中的网格点保持静止,而最后一个网格之间的网格点保持不变。拟合网格的层和指定远场的内部边界通过“ Delaunay图”映射方法进行映射。但是背景网格(Delaunay图)本身通过基于“弹簧”类比的简单节点松弛而变形,以提高效率。然后,使用某些标准检查变形网格的质量。如果变形的网格未通过检查步骤,则执行局部重新网格化程序。基于动态混合网格,还开发了用于3D非定常Navier-Stokes方程的并行隐式有限体积流量求解器。为了解决多体分离问题,在流动求解器的同一框架中耦合了刚体的集成,6DOF运动方程。复杂3D变形配置的应用程序证明了本方法的鲁棒性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号