...
首页> 外文期刊>Computers & Fluids >Three dimensional numerical simulations of long-span bridge aerodynamics, using block-iterative coupling and DES
【24h】

Three dimensional numerical simulations of long-span bridge aerodynamics, using block-iterative coupling and DES

机译:大跨度桥梁空气动力学的三维数值模拟,使用块迭代耦合和DES

获取原文
获取原文并翻译 | 示例
           

摘要

The design of long-span bridges often depends on wind tunnel testing of sectional or full aeroelastic models. Some progress has been made to find a computational alternative to replace these physical tests. In this paper, an innovative computational fluid dynamics (CFD) method is presented, where the fluid-structure interaction (FS1) is solved through a self-developed code combined with an ANSYS-CFX solver. Then an improved CFD method based on block-iterative coupling is also proposed. This method can be readily used for two dimensional (2D) and three dimensional (3D) structure modelling. Detached-Eddy simulation for 3D viscous turbulent incompressible flow is applied to the 3D numerical analysis of bridge deck sections. Firstly, 2D numerical simulations of a thin airfoil demonstrate the accuracy of the present CFD method. Secondly, numerical simulations of a U-shape beam with both 2D and 3D modelling are conducted. The comparisons of aerodynamic force coefficients thus obtained with wind tunnel test results well meet the prediction that 3D CFD simulations are more accurate than 2D CFD simulations. Thirdly, 2D and 3D CFD simulations are performed for two generic bridge deck sections to produce their aerodynamic force coefficients and flutter derivatives. The computed values agree well with the available computational and wind tunnel test results. Once again, this demonstrates the accuracy of the proposed 3D CFD simulations. Finally, the 3D based wake flow vision is captured, which shows another advantage of 3D CFD simulations. All the simulation results demonstrate that the proposed 3D CFD method has good accuracy and significant benefits for aerodynamic analysis and computational FSI studies of long-span bridges and other slender structures.
机译:大跨度桥梁的设计通常取决于截面或完全气动弹性模型的风洞测试。在寻找替代这些物理测试的计算替代方案方面已经取得了一些进展。在本文中,提出了一种创新的计算流体动力学(CFD)方法,其中通过与ANSYS-CFX求解器结合的自行开发的代码来解决流体与结构的相互作用(FS1)。然后,提出了一种基于块迭代耦合的改进CFD方法。此方法可以轻松用于二维​​(2D)和三维(3D)结构建模。将3D粘性湍流不可压缩流的分离涡模拟应用于桥面板截面的3D数值分析。首先,薄机翼的二维数值模拟证明了本CFD方法的准确性。其次,利用2D和3D建模对U形梁进行了数值模拟。如此获得的空气动力力系数与风洞测试结果的比较很好地满足了以下预测:3D CFD模拟比2D CFD模拟更精确。第三,对两个通用桥面截面进行2D和3D CFD仿真,以产生其气动力系数和颤振导数。计算值与可用的计算和风洞测试结果非常吻合。这再次证明了所提出的3D CFD仿真的准确性。最后,捕获了基于3D的尾流视觉,这显示了3D CFD仿真的另一个优点。所有的仿真结果表明,所提出的3D CFD方法具有良好的精度,对于大跨度桥梁和其他细长结构的空气动力学分析和FSI计算研究具有明显的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号