...
首页> 外文期刊>Computers & Fluids >Numerical solution of incompressible Navier-Stokes equations using a fractional-step approach
【24h】

Numerical solution of incompressible Navier-Stokes equations using a fractional-step approach

机译:分数步法求解不可压缩的Navier-Stokes方程的数值解

获取原文
获取原文并翻译 | 示例

摘要

A fractional step method for the solution of steady and unsteady incompressible Navier-Stokes equations is outlined. The method is based on a finite-volume formulation and uses the pressure in the cell center and the mass fluxes across the faces of each cell as dependent variables. Implicit treatment of convective and viscous terms in the momentum equations enables the numerical stability restrictions to be relaxed. The linearization error in the implicit solution of momentum equations is reduced by using three subiterations in order to achieve second order temporal accuracy for time-accurate calculations. In spatial discretizations of the momentum equations, a high-order (third and fifth) flux-difference splitting for the convective terms and a second-order central difference for the viscous terms are used. The resulting algebraic equations are solved with a line-relaxation scheme which allows the use of large time step. A four color ZEBRA scheme is employed after the line-relaxation procedure in the solution of the Poisson equation for pressure. This procedure is applied to a Couette flow problem using a distorted computational grid to show that the method minimizes grid effects. Additional benchmark cases include the unsteady laminar flow over a circular cylinder for Reynolds numbers of 200, and a 3-D, steady, turbulent wingtip vortex wake propagation study. The solution algorithm does a very good job in resolving the vortex core when fifth-order upwind differencing and a modified production term in the Baldwin-Barth one-equation turbulence model are used with adequate grid resolution.
机译:概述了求解稳态和非稳态不可压缩Navier-Stokes方程的分数步法。该方法基于有限体积公式,并使用单元格中心的压力和每个单元格表面的质量通量作为因变量。动量方程中对流项和粘性项的隐式处理使数值稳定性约束得以放松。通过使用三个子迭代来减少动量方程式隐式解中的线性化误差,以实现用于时间精确计算的二阶时间精度。在动量方程的空间离散化中,对流项使用高阶(第三和第五阶)通量差分裂,粘性项使用二阶中心差。用线松弛方案求解所得的代数方程,该方案允许使用较大的时间步长。在线松弛过程之后,在压力的泊松方程的解中采用四色ZEBRA方案。此过程适用于使用变形的计算网格的Couette流问题,以表明该方法最大程度地减小了网格影响。其他基准案例包括雷诺数为200的圆柱体上的非稳定层流和3D稳定湍流翼尖涡流尾迹传播研究。当使用五阶迎风微分和鲍德温-巴尔特一方程湍流模型中的修正生产项并具有足够的网格分辨率时,求解算法在解决旋涡核心方面做得非常出色。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号