...
首页> 外文期刊>Computational Materials Science >Automatic parallel generation of finite element meshes for complex spatial structures
【24h】

Automatic parallel generation of finite element meshes for complex spatial structures

机译:自动并行生成复杂空间结构的有限元网格

获取原文
获取原文并翻译 | 示例
           

摘要

Recent developments in experimental techniques are enabling researchers to non-destructively characterize complex spatial structures with multiple constituents, e.g. polycrystalline aggregates. However, a combination of the high level of detail of the experimental data and often extreme geometry complexity make the building of models of such structures highly difficult and demanding. Finite element (FE) pre-processor tools can often be inadequate, especially when the structure contains multiple constituents and when the model building process has to be automatized. This paper proposes a novel framework for automatic and parallelized generation of FE models from discrete spatial data (voxels) procured from experimental techniques, e.g. 3D X-ray diffraction microscopy or X-ray diffraction contrast tomography (DCT). The technique can also be applied to analytical spatial geometries. The framework consists of reconstructing the surfaces of different constituents from the experimental data, generating FE meshes of these surfaces, followed by volume meshing of the constituents interior while enforcing the already generated surfaces meshes. This approach assures a conformal mesh between the adjoining surfaces and at the same time enables a fully independent and parallel meshing of the constituents. The conformal mesh allows for a variety of connectivity models between the constituents, including layers of cohesive elements for simulating the grain boundaries. The applicability of the approach is demonstrated first by creating a FE model of a 400 μm diameter stainless steel wire characterized in 3D by DCT. FE model generation of spatial Voronoi tessellations, representing models of polycrystalline aggregates with up to 5000 grains, is then demonstrated. Here, anisotropic elasticity and crystal plasticity constitutive laws are used to estimate the scatter of the macroscopic responses due the random nature of the grains' crystallographic orientations. At 2000 grains this influence is shown to be very small.
机译:实验技术的最新发展使研究人员能够无损地表征具有多种成分的复杂空间结构,例如多晶聚集体。然而,实验数据的高细节水平和经常的极端几何复杂性的结合使得建立这种结构的模型非常困难且要求很高。有限元(FE)预处理工具通常不足,尤其是当结构包含多个组成部分并且必须自动进行模型构建过程时。本文提出了一种新颖的框架,用于从实验技术(例如,实验数据)获得的离散空间数据(体素)中自动自动并行生成有限元模型。 3D X射线衍射显微镜或X射线衍射对比断层扫描(DCT)。该技术还可以应用于分析空间几何。该框架包括根据实验数据重建不同成分的表面,生成这些表面的有限元网格,然后对成分内部进行体积网格划分,同时强制执行已生成的表面网格。这种方法确保了相邻表面之间的共形网格,并同时实现了成分的完全独立和平行的网格划分。保形网格允许成分之间的各种连通性模型,包括用于模拟晶界的内聚元素层。该方法的适用性首先通过创建直径为400μm的不锈钢丝的有限元模型(通过DCT进行3D表征)来证明。然后演示了空间Voronoi镶嵌的FE模型生成,该模型代表了具有多达5000个晶粒的多晶聚集体的模型。在这里,各向异性弹性和晶体可塑性的本构定律被用来估计宏观响应的散布,这是由于晶粒的晶体学取向是随机的。在2000粒时,这种影响显示为很小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号