首页> 外文期刊>Computational Materials Science >Modelling with variable atomic structure: Dislocation nucleation from symmetric tilt grain boundaries in aluminium
【24h】

Modelling with variable atomic structure: Dislocation nucleation from symmetric tilt grain boundaries in aluminium

机译:具有可变原子结构的建模:铝中对称倾斜晶界的位错成核

获取原文
获取原文并翻译 | 示例
           

摘要

Plastic deformation is thought to involve highly 'stochastic' phenomena, caused by the generation, motion and interactions of crystal defects called dislocations and grain boundaries. Grain boundaries (or GBs) can act as the nucleation source for dislocations in polycrystalline materials, which may become the rate-limiting phenomenon in FCC metals with grain sizes less than 15 nm. Atomistic simulations were performed to study the fundamental factors of dislocation nucleation in non-equilibrium bi-crystals of aluminium. It is shown that several metastable grain boundary structures may accommodate an identical lattice misorientation, and form several non-equilibrium states not coincidental with the global-minimum energy at room temperature. Thermodynamic mechanisms for metastability are discussed, with evidence provided by a high resolution image from the literature. A recently developed post-processing technique is applied in a novel manner to analyse the non-linear, post-yield dislocation nucleation response with respect to the cumulative dislocation length. A correlation is established between the atomic free volume and the accumulation of dislocations at the final state of the simulation. A statistically valid relationship has been demonstrated, which links the initial-state (300 K, 1 atm) GB energy and free volume, with the critical resolved shear stress for dislocation nucleation under compressive loading. The mechanisms underpinning dislocation nucleation in compression are studied and linked to localised asymmetry of the GB normal stress. Overall, this work shows that by isolating key state variables, a comparative analysis of several non-equilibrium bi-crystals may provide an effective means of studying the fundamental factors of GB effects. (C) 2015 Elsevier B.V. All rights reserved.
机译:人们认为塑性变形涉及高度“随机”现象,这是由晶体缺陷(称为位错和晶界)的产生,运动和相互作用引起的。晶界(或GBs)可以作为多晶材料中位错的形核源,这在晶粒尺寸小于15 nm的FCC金属中可能成为限速现象。进行了原子模拟,以研究铝的非平衡双晶体中位错成核的基本因素。结果表明,几种亚稳态的晶界结构可以适应相同的晶格取向错误,并形成与室温下的全局最小能量不重合的几个非平衡态。讨论了亚稳态的热力学机理,并有文献提供的高分辨率图像提供了证据。最近开发的后处理技术以新颖的方式应用于分析相对于累积位错长度的非线性,屈服后位错成核反应。在模拟的最终状态下,无原子体积与位错积累之间建立了相关性。已经证明了统计上有效的关系,该关系将初始状态(300 K,1个大气压)GB能量和自由体积与压缩载荷下位错形核的临界解析剪切应力联系在一起。研究了压缩中位错成核的基础机制,并将其与GB正应力的局部不对称联系在一起。总的来说,这项工作表明,通过隔离关键状态变量,对几种非平衡双晶体的比较分析可能是研究GB效应基本因素的有效手段。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号